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ABSTRACT
Graph traversals are a basic but fundamental ingredient for a variety
of graph algorithms and graph-oriented queries. To achieve the best
possible query performance, they need to be implemented at the
core of a database management system that aims at storing, manip-
ulating, and querying graph data. Increasingly, modern business
applications demand native graph query and processing capabilities
for enterprise-critical operations on data stored in relational database
management systems. In this paper we propose an extensible graph
traversal framework (GRAPHITE) as a central graph processing com-
ponent on a common storage engine inside a relational database
management system.

We study the influence of the graph topology on the execution
time of graph traversals and derive two traversal algorithm imple-
mentations specialized for different graph topologies and traversal
queries. We conduct extensive experiments on GRAPHITE for a
large variety of real-world graph data sets and input configurations.
Our experiments show that the proposed traversal algorithms differ
by up to two orders of magnitude for different input configurations
and therefore demonstrate the need for a versatile framework to effi-
ciently process graph traversals on a wide range of different graph
topologies and types of queries. Finally, we highlight that the query
performance of our traversal implementations is competitive with
those of two native graph database management systems.

1. INTRODUCTION
Evermore, enterprises from various domains, such as the financial,

insurance, and pharmaceutical industry, explore and analyze the con-
nections between data records in traditional customer-relationship
management and enterprise-resource-planning systems. Typically,
these industries rely on mature RDBMS technology to retain a single
source of truth and access. Although graph structure is already latent
in the relational schema and inherently represented in foreign key
relationships, managing native graph data is moving into focus as it
allows rapid application development in the absence of an upfront
defined database schema. Specifically, novel and traditional business
applications leverage the advantages of a graph data model, such
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Figure 1: Architecture alternatives for graph processing.

as schema flexibility and an explicit representation of relationships
between data records. Although these business applications mainly
operate on graph-structured data, they still require direct access to
the relational base data.

Existing solutions performing graph operations on business-crit-
ical data either use a combination of SQL and application logic or
employ a graph management system (GMS) such as Neo4j [3] or
Sparksee [24], or distributed graph systems, such as GraphLab [21]
or Apache Giraph [1]. For the first approach, relying only on SQL
typically results in poor execution performance caused by the func-
tional mismatch between a traversal algebra [29] and the relational
algebra. Even worse, the relational query optimizer is not graph-
aware i.e., it does not keep statistics about the graph topology nor
about graph query patterns, and therefore is likely to construct a
suboptimal execution plan. The other alternative is to process the
data in a native GMS to hurdle the unsuitability of the relational
algebra to express complex graph queries in an RDBMS.

Figure 1a depicts a traditional system landscape with an RDBMS
and a GMS located next to each other and orchestrated at application
level. A GMS is superior to an RDBMS for complex graph process-
ing as it provides a natural understanding of a graph data model, a
rich set of graph processing functionality, and optimized data struc-
tures for fast data access. Especially scenarios that do not require
accessing the most recent data snapshot nor combine operations
from different data models into cross-data-model operations can
be handled by GMS’s efficiently. Cross-data-model operations com-
bining data from various data models, i.e., relational, text, spatial,
temporal, and graph however will play a key role for graph analyt-
ics in the future [5]. For example, a clinical information system
stores data from patient records in an RDBMS. Graph analytics on a
knowledge graph of patient records and their relationships to each
other help physicians to improve diagnostics and identify complex
co-morbidity conditions. Such a medical knowledge graph contains
not only information about the relationships between diagnoses
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and patients, but also text data from patient records and temporal
information about prescriptions.

In this paper we propose the seamless integration of graph pro-
cessing functionality into an RDBMS sharing a common storage
engine as depicted in Figure 1b. Located next to a relational run-
time stack in the same system, a graph runtime with a set of graph
operators provides native support for querying graph data on top of
a common relational storage engine. For the context of this paper,
we focus on graph traversals as they are a vital component of every
GMS and the foundation for a large variety of graph algorithms,
such as finding shortest paths, detecting connected components, and
answering reachability queries.

We introduce GRAPHITE, a traversal framework that provides
an extensible set of logical graph traversal operators and their cor-
responding implementations. Similar to the distinction between
a logical and a physical layer in a relational runtime, GRAPHITE
also provides a set of logical operators and a set of corresponding
physical implementations. In the context of this paper we propose
two traversal implementations optimized for in-memory columnar
RDBMS but argue that the general concept of a traversal framework
can be extended with specialized traversal implementations and cost
models for row-oriented or even disk-based RDBMS. GRAPHITE
operates on a physical column group model (cf. Figure 2). We
summarize our main contributions as follows:

• We introduce GRAPHITE as a modular and extensible founda-
tion of a traversal framework inside an RDBMS, which allows
seamlessly reusing existing physical data structures and de-
ploying of novel traversal implementations.

• We present two different implementations of the traversal op-
erator, a naive level-synchronous (LS), and a novel fragmented-
incremental (FI) traversal algorithm that is superior to the
naive approach for specific graph topologies and traversal
queries.

• We conduct an extensive experimental evaluation for a large
variety of real-world data sets and traversal queries, and show
an execution time improvement of our FI-traversal by up to
two orders of magnitude compared to the LS-traversal for
certain graph topologies and traversal queries. Moreover, we
show that the query performance of our implementations is
competitive with those of two native graph database manage-
ment systems.

The remainder of this paper is structured as follows: in Section 2, we
describe GRAPHITE as the foundation of the traversal operator that
we present in Section 3. We detail the two physical implementations
of the traversal operator in Sections 4 and 5, respectively. A set of
topology-aware clustering techniques that can be applied to both
physical implementations is presented in Section 6. In Section 7
we provide an extensive experimental evaluation of our traversal
implementations. Finally, we discuss related work in Section 8
before we conclude the paper in Section 9.

2. GRAPH TRAVERSAL FRAMEWORK
GRAPHITE is a general and extensible framework that allows easy
deploying, testing, and benchmarking of traversal implementations
on top of a common relational storage engine of an RDBMS. It
provides a common interface for traversal configuration parameters
and is tightly integrated with a unified, graph-aware controller
infrastructure leveraging a comprehensive set of available graph
statistics. We show that the query optimizer of an RDBMS can
benefit from having extensive information about the graph topology
to choose the best traversal operator for a given traversal query.

id: 1
name: John
type: User

id: 2
title: Shining
type: Product

id: 3
title: It
type: Product

id: 4
name: Horror
type: Category

id: 5
name: Literature
type: Category

type: category

type: similar

type: belongs

type: belongs

type: rated
rating: 4.0

type: rated
rating: 5.0

(a) Example graph.

id type name title . . .

1 User John ? . . .
2 Product ? Shining
3 Product ? It . . .
4 Category Horror ?
5 Category Literature ? . . .

(b) Vertex column group.

Vs Vt type rating . . .

2 3 similar ? . . .
2 4 belongs ?
3 4 belongs ? . . .
1 3 rated 5.0
1 2 rated 4.0 . . .
4 5 category ?

(c) Edge column group.

Figure 2: Mapping of a property graph to column groups.

Graph Model and Physical Representation. GRAPHITE provides
as logical data model a property graph model. The property graph
data model has emerged as the de-facto standard for general purpose
graph processing in enterprise environments [28]. It represents
multi-relational directed graphs where vertices and edges can have
assigned an arbitrary number of attributes in a key/value fashion.

We store a property graph using a common storage infrastructure
with the relational runtime stack in two column groups, one for
the vertices and one for the edges, respectively. A column group
represents a column-oriented data layout, where a new attribute can
be added by appending a new column to the column group [7]. Null
values in sparsely populated columns can be compressed through
run-length-based compression techniques [6]. Additionally, the
evaluation of column predicates allows a seamless combination
of relational predicate filters with the actual traversal operation.
Figure 2 depicts an example graph and its mapping to two column
groups. We map each vertex and edge to a single entry in the column
group and each attribute to a separate column. Each vertex has a
unique identifier as the only mandatory attribute.
Traversal Configuration. In the following, we introduce a formal
notion of the graph traversal operation, its input parameters, and the
expected output.

DEFINITION 1. (Traversal Configuration) Let G = (V,E) be
a directed, multi-relational graph, where V refers to the set of
vertices and E ⊆ (V × V ) refers to the set of edges. We define a
traversal configuration ρ as a tuple ρ = (S, ϕ, c, r, d) composed
of a set of start vertices S ⊆ V , an edge predicate ϕ, a collection
boundary c, a recursion boundary r, and a traversal direction d. A
graph traversal τG(ρ) is a unary operation on G and returns a set
of visited vertices R ⊆ V .

We represent each vertex in S by its unique vertex identifier. The
edge predicate ϕ defines a propositional formula consisting of
atomic attribute predicates that can be combined with the logical
operators ∧, ∨, and ¬. For each edge e ∈ E, the traversal algorithm
evaluates ϕ and appends matching edges to the working set of active
edges. Further, it receives a recursion boundary r ∈ N+ that defines
the maximum number of levels to traverse. To support unlimited
traversals or transitive closure calculations, the recursion boundary
can be infinite (∞). The collection boundary c ∈ N specifies the
level of the traversal from where to start collecting discovered ver-
tices. For c = 0, we add all start vertices to the result. For any
traversal configuration, the condition c ≤ r must hold. The traversal
direction d ∈ {→,←} specifies the direction to traverse the edges.
A forward traversal (→) traverses edges from the source vertex to
the target vertex, a backward traversal (←) traverses edges in the
opposite direction. The traversal operation outputs a set of vertices
that have been visited in the boundaries defined by c and r.
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Traversal Configuration Result

({ A } , ’type=a’, 0, 1,→) { A,B,C,D }
({ A } , ’type=a’, 0, 1,→) { A,B,C,D }
({ A } , ’type=a’, 1, 1,→) { B,C,D }
({ A } , ’type=a’, 2, 2,→) { F }

({ A } , ’type=a’, 1,∞,→) { B,C,D, F }
({ E } , ’type=b’, 2, 2,←) {D }

({ A } , ’type=a ∨ type=b’, 2, 2,→) { E,F }

Figure 3: Traversal configurations and result sets.

Formal Description. We define a traversal by a totally ordered set
P of path steps, where each path step describes the transition be-
tween two traversal iterations. Path steps are evaluated sequentially
according to the total ordering in P . We determine the number
of path steps by the recursion boundary r. Formally, we define a
graph traversal operation based on the mathematical notion of sets
and their basic operations union and complement. Each path step
pi ∈ P with 1 ≤ i ≤ r receives a set of vertices Di−1 discovered
at level i − 1 and returns a set of adjacent vertices Di. Initially,
we assign the set of start vertices to the set of discovered vertices
(D0 = S). In the following, we define the transformation rules for
pi with i > 0.

D→i = { v | ∃u ∈ Di−1 : e = (u, v) ∈ E ∧ eval(e, ϕ) } (1)

D←i = { u | ∃v ∈ Di−1 : e = (u, v) ∈ E ∧ eval(e, ϕ) } (2)

Depending on the traversal direction d, we select a different transfor-
mation rule. Equation 1 presents the definition for forward traversals
(→), and Equation 2 for backward traversals (←), respectively. In
path step pi we generate the set of vertices Di by traversing from
each vertex in Di−1 over all outgoing/incoming edges matching the
edge predicate ϕ. Once the traversal operation finished processing
the path step, the vertex setDi contains all vertices reachable within
one hop from the vertices in Di−1 via edges for which ϕ holds.
Equation 3 shows the definition of the resulting vertex set Rτ for a
traversal operation τ .

Rτ =

(
r⋃
i=c

Di︸ ︷︷ ︸
target vertices

)
\

(
c−1⋃
i=0

Di︸ ︷︷ ︸
visited vertices

)
(3)

Conceptually, the collection boundary c and the recursion boundary
r divide the discovered vertices into two working sets. The set of
visited vertices contains all vertices that have been discovered before
the traversal reached the collection boundary c. Vertices within the
set of visited vertices are not considered for the final result, but are
necessary to complete the traversal operation. We produce the set
of visited vertices by forming the union of all partial vertex sets
{D0, D1, . . . , Dc−1} from path steps p1 to pc−1. The set of target
vertices refers to the set of vertices that are potentially relevant for
the final result set. To produce the set of target vertices, we union
all partial vertex sets {Dc, . . . , Dr} from path steps pc to pr . To
retrieve the final result, we compute the complement between the
set of target vertices and the set of visited vertices. We consider
only vertices from the set of target vertices that are not in the set of
visited vertices for the final result. Figure 3 shows a set of example
traversal configurations and their query results for the given graph.
Example. Traversal configuration ({A } , ’type=a’, 2, 2,→) in
Figure 3 traverses starting from vertex A on edges of type a and
visits all vertices within a distance of 2 from vertex A. Here, we
only collect discovered vertices in the last path step p2. Dashed
arrows with numbers show the traversed edges and the path step
they were discovered in. First, path step p1 transforms the vertex set

Preparation
Phase

Traversal
Phase

Controller

Graph
Statistics

Level-
Synchronous

Fragmented-
Incremental

. . .

Decoding
Phase

ρ(S, ϕ, c, r, d)

Figure 4: Processing phases in GRAPHITE.

D0 = {A } into the vertex set D1 = {B,C,D }. Next, path step
p2 transforms vertex set D1 into vertex set D2 = { F }. Finally,
the output for this example graph and traversal configuration is a
vertex set containing vertex F only.

3. TRAVERSAL OPERATORS
We now discuss the components of GRAPHITE, as shown in Figure 4,
in detail. It receives a traversal configuration ρ and processes a
traversal in three phases: a Preparation Phase, a Traversal Phase,
and a Decoding Phase. All three phases share common interfaces
allowing to easily exchange implementations.
Preparation Phase. We pass a set of start vertices S to the prepa-
ration phase and transform it into a more processing-friendly set-
oriented data structure. If the storage engine leverages dictionary
encoding [6], we consult the value dictionary of the source/target
vertex column in the edge column group, and encode all vertices
from S into their internal numerical value code representation. De-
pending on the traversal direction, we use a different vertex ID
column (either Vs or Vt from Figure 2). In addition to the actual
value encoding, we select active edges that are to be considered for
the traversal operation. Therefore, we push down the edge predicate
ϕ to the storage engine to filter out invalid edges. Active edges
are stored in a list that represents the valid and invalid records of a
column group. Additionally, transactional visibility is guaranteed
by intersecting the obtained list with visibility information in the
current transaction context from the multi-version concurrency con-
trol of the RDBMS. Finally, we pass the list of active edges to the
traversal phase for further processing.
Traversal Phase. We distinguish two major components in the
traversal phase: a set of traversal operator implementations and a
traversal controller. Within the scope of this paper, we propose two
traversal algorithm strategies—level-synchronous and fragmented-
incremental—and describe them in detail in Sections 4 and 5, re-
spectively. Initially, we pass a collection boundary c, a recursion
boundary r, a traversal direction d, a set of active edges Ea, and
the encoded vertex set S to the traversal phase. We select the best
traversal operator implementation based on collected graph statistics
and the characteristics of the traversal query. After the traversal
operator has finished execution, it returns discovered vertices in a
set-oriented data structure.
Decoding Phase. To translate the internal code representations of
discovered vertices back into actual ID values, we consult the value
dictionary of the source/target vertex column for each value code
and add the actual value to the final output set. If the storage engine
does not leverage dictionary encoding, the decoding phase can be
omitted and the result set directly returned.

3.1 Strategies and Variations
The core component of an implementation of the graph traversal
operator is the traversal algorithm. In general, traversal algorithms
occur in variations favoring different graph topologies and traversal
queries. While dense graphs with a large vertex outdegree favor a
more robust (with respect to skewed outdegree distribution) level-
synchronous traversal algorithm, a very sparse graph with a low
average vertex outdegree benefits from a more fine-granular traversal



implementation. We divide the algorithm engineering space for
traversal implementations into two dimensions: traversal strategy
and physical reorganization.

Within the scope of this paper, we propose two traversal algo-
rithms named LS-traversal and FI-traversal in the traversal strategy
dimension. The second dimension describes the physical organi-
zation of the edges. We distinguish between a clustered physical
organization, where edges having the same source vertex are clus-
tered together in the column, and an unclustered physical organiza-
tion, where edges do not have a particular physical ordering. Both
dimensions are freely combinable with each other. The LS-traversal
operates level-synchronously and thereby emits only those vertices
within a single traversal iteration that are adjacent to the vertices
from the working set. For each traversal iteration, it reads the com-
plete graph to retrieve adjacent vertices. For sparse graphs, each
edge is accessed possibly multiple times although each edge is only
traversed exactly once. In multi-core environments with a large
number of available hardware threads, this overhead can be hidden
through parallelized read operations on the graph. For an under-
utilized database management system with a low query workload,
such a read-intensive implementation can hide the additional cost
for reading data multiple times. However, a single traversal query
cannot leverage the full parallelization capabilities in a fully utilized
database management system with a high query workload and pos-
sibly hundreds of traversal queries running in parallel. In such a
scenario, the CPU is fully occupied and the overhead for reading the
complete graph multiple times for a single traversal query cannot be
concealed anymore. To keep the execution time of a single query
low, either more hardware resources have to be added or the resource
consumption of a single query has to be reduced.

The FI-traversal uses less CPU resources than the LS-traversal al-
gorithm and aims at minimizing the total number of read operations
on the complete graph. It processes a graph in column fragments
and thereby materializes adjacent vertices immediately after the
processing of the respective column fragment. Column fragments
divide a column into logical partitions, where partition sizes can
vary within a column. This allows limiting the operation area to
those parts of the graph that are relevant for the given query. We
give a detailed description of the FI-traversal in Section 5.

4. LS-TRAVERSAL
Figure 5 sketches the execution flow of our LS-traversal implemen-
tation. It operates on two columns Vs and Vt that represent source
and target vertices of edges, respectively. To fully exploit thread-
level parallelization, we split columns Vs and Vt into n equally sized
logical partitions of edges. In the following, s1, . . . , sn describe par-
titions of Vs, partitions t1, . . . , tn correspond to column Vt. An LS-
traversal visits vertices in a strict breadth-first ordering and thereby
discovers vertices always on the shortest path. Conceptually, we
divide an LS-traversal algorithm into four major algorithmic steps:
Distribute, Scan, Materialize, and Merge. The distribute step prop-
agates a search request with the working set of vertices to all n
partitions in parallel. Next, each scan worker thread searches for
vertices from the working set in its local partition si with 1 ≤ i ≤ n
and writes search hits into a local position list pi.

Each materialization worker thread receives a local position list
pi and fetches adjacent vertices from the target vertex column Vt.
Subsequently, the merge step collects and combines all locally dis-
covered adjacent vertices into the vertex set R. Finally, the traversal
algorithm either terminates and forwards its output to the decoding
phase, or continues with the next traversal iteration.

We sketch our LS-traversal implementation in Algorithm 1. Ini-
tially, we pass a traversal configuration κ = (Sm, Ea, c, r, d) to the

S s3

s2

s1

...

sn

Vs

p3 0
1

p2 0
1

p1 0
1

...

pn 0
1

t3

t2

t1

...

tn

Vt

R

Distribute Scan Materialize Merge

Figure 5: LS-traversal algorithm.

Algorithm 1: LS-traversal
Input : Traversal configuration κ = (Sm, Ea, c, r, d).
Output : Set of discovered vertices R.

1 begin
2 if d is backward then
3 swap(Vs,Vt); // Adjust Column Handles

4 if c = 0 then
5 R← Sm // Add start vertices to result

6 p← 1;Dw ← Sm while p ≤ r do
7 if Dw = ∅ then
8 return; // No more vertices to discover

9 P ← ∅;
10 Vs.scan(Dw, Ea, P ); // Parallel scan for Dw

11 Dw ← ∅; // Reset working vertex set

12 Vt.materialize(P,Dw); // Materialize vertices from P

13 if p ≥ c then
14 R← R ∪Dw; // Add vertices from Dw to result R

15 p← p+ 1;

16 return R;

LS-traversal. The preparation phase emits a vertex set Sm, evaluates
the edge predicate ϕ and returns a set of active edgesEa. The output
of an LS-traversal execution is a set of discovered verticesR. We col-
lect intermediate results, such as vertex sets and position lists, either
in space-efficient bit sets or in dense set data structures, depending
on the estimated output cardinality of the traversal iteration.

First, the LS-traversal algorithm analyzes whether the traversal
configuration describes a forward or a backward traversal and up-
dates the handles to the columns accordingly (Line 3). If the col-
lection boundary c is zero, all vertices in Sm are added to the final
result R (Line 5). Initially, we assign the vertex set Sm to the work-
ing vertex set Dw. The major part of the LS-traversal algorithm
describes a single traversal iteration and is executed at most r times
(Lines 6–15). At the beginning of each traversal iteration, we check
the working set Dw for emptiness. If it is empty, no more vertices
can be discovered and the execution of the LS-traversal is termi-
nated. During each traversal iteration, we scan the source vertex
column Vs in parallel, and emit matching edges into a position list
P . During the scan operation, we use the set of active edges Ea to
check the validity of the matching edges and filter out invalid edges.
In addition, the scan operation modifies the set of active edges by
invalidating all traversed edges. Next, the LS-traversal algorithm
materializes adjacent vertices into the working set Dw using the po-
sition list P . If the currently active traversal iteration already passed
the collection boundary c, it adds the discovered vertices from Dw
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{1, 7, 8}
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12 15
15 17
18 17
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Frontier

Figure 6: Example transition graph and auxiliary data structures.

to the result set R. Finally, it passes the working set Dw to the next
traversal iteration. The traversal algorithm terminates if either no
more vertices have been discovered during the last traversal iteration
or it has reached the recursion boundary r.
Cost Model. The execution time of the LS-traversal is dominated by
the total number of edges in the graph and the number of processed
traversal iterations. It has a worst case time complexity ofO(r ·|E|),
where r denotes the recursion boundary and |E| refers to the total
number of edges in the graph. For each traversal iteration, it scans
the graph for adjacent vertices from a given vertex set.

We provide a query and graph topology-dependent cost model to
describe the execution time behavior of the LS-traversal. The cost
of an LS-traversal can be derived from the number of edges to read
and the number of traversal iterations to perform.

CLS = min{r, δ̃} · |E| · Ce (4)

We define the cost CLS as the composite product of the minimum of
the recursion boundary r and the estimated diameter δ̃ of the graph,
the number of edges |E|, and a constant cost Ce to read a single
edge from main memory in Equation 4.

5. FI-TRAVERSAL
An FI-traversal attempts to limit read operations of data records to
those that are required for creating the final result. Thereby, it pre-
serves the ability to fully exploit available thread-level parallelism
and differs from an LS-traversal in two fundamental ways. First,
an FI-traversal materializes adjacent vertices of a given set of ver-
tices on column fragment granularity instead of column granularity.
Therefore, intermediate results can be accessed immediately and are
available before the next scan operation begins. Second, a scan oper-
ation searches for adjacent vertices from several unfinished traversal
iterations and outputs results of multiple traversal iterations. Con-
sequently, an FI-traversal does not operate level-synchronously, but
instead traverses the graph incrementally by processing fragments
in sequence.

We select the next fragment to read with the help of a light-
weight, synopsis-based transition graph index (TGI). Conceptually,
a TGI models a directed graph, where vertices denote fragments
and edges represent transitions between them. A transition between
two fragments F1 and F2 describes a path of length 2 with an
edge e1 = (u, v) in F1 and an edge e2 = (v, w) residing in F2.
If we read edge e1 in fragment F1 and proceed with the traversal
afterwards, we have to read fragment F2 as well, as it contains edges
that extend the traversal path. A fragment has at most one fragment
transition to any other fragment, including to itself. Since not every
fragment has a transition to every other fragment in the transition
graph, we only represent directed edges between fragments if there
is a transition between them. In addition to fragment transitions, we

Algorithm 2: FI-traversal
Input : Traversal configuration κ = (Sm, Ea, c, r, d).
Output : Set of discovered vertices R.

1 begin
2 if d is backward then
3 swap(Vs,Vt); // Adjust Column Handles

4 Dw[0]← Sm;
5 Frontiers← Sm;
6 sFactor ← 1;
7 mFactor ← 1;
8 while getNextFragment(Frontiers, F ) do
9 Vs.nWayScan(F,Dw, Ea, sFactor, P );

10 Vt.nWayMaterialize(P,mFactor,Dw, F rontiers) if
sFactor ≤ r then ++sFactor if mFactor < r then
++mFactor

11 R← generateResult(c, r,Dw);

store light-weight synopses representing the distinct values of each
fragment. A fragment synopsis is stored as a compact bloom filter
with bits set for all distinct values present in the fragment. Figure 6
depicts a transition graph with fragment size 4 for the edge column
group on the right side. For example, there is a fragment transition
F2 → F4 with a path 13 ; 12 ; 15, i.e., e1 = (13, 12) in F2 and
e2 = (12, 15) in F4. The fragment synopses are directly attached
to the corresponding fragment, e.g., the fragment synopsis {13, 14}
represents all distinct values in fragment F2.

In addition to the TGI, we store query-specific runtime informa-
tion about already processed fragments and fragment candidates in
auxiliary data structures. We keep already processed fragments in a
fragment execution chain and append to it whenever a new fragment
has been selected for execution. Since we only choose a single frag-
ment at a time, we queue all other generated fragment candidates in
a priority-based fragment queue. To choose the next fragment for
execution, we select the tail fragment of the execution chain and use
the set of newly discovered vertices (the so-called frontiers) from
the previous traversal round. Every vertex in the graph can only be a
frontier vertex exactly once, i.e., when the vertex is first discovered.

For the tail fragment, we probe all adjacent fragment synopses
with the frontier vertices. If an adjacent fragment matches, i.e. there
is a transition between the tail and the adjacent fragment caused by
one or more frontiers, the adjacent fragment is added to the fragment
queue. If the fragment is already queued, we increase its priority.
After updating the fragment queue, we remove the fragment with
the highest priority and return it to the main traversal algorithm. If
there are no frontier vertices, we immediately remove the fragment
with the highest priority. If the fragment queue becomes empty, the
traversal terminates.

Example. Let us consider an example traversal starting with
vertex 13 as depicted in Figure 6. We start the traversal at fragment
F2 and emit the newly discovered vertex with id 12. During the
fragment selection, we probe all adjacent fragments of F2 (i.e., F2,
F3, and F4) with frontier vertex 12. Since fragment F4 contains
vertex 12 in its fragment synopsis, we select it as the next fragment
to read. After processing fragment F4, we emit frontier vertex 15
and select the next fragment to read. Since the probing generates
two candidate fragments F3 and F4, we select one of them and
continue the traversal.

After describing the principle workings of the FI-traversal algo-
rithm, we sketch the algorithmic description in Algorithm 2. Ini-
tially, we pass a traversal configuration κ with a vertex set Sm, an
edge set Ea, a collection boundary c, a recursion boundary r, and
a direction d to the FI-traversal algorithm. It outputs a vertex set
R with visited vertices that have been discovered between c and r.
Since the execution of an FI-traversal is based on sequential reads



Algorithm 3: Procedure getNextFragment(Frontiers,F)
Input : Set of frontier vertices Frontiers.
Output : Candidate fragment F to read next.

1 begin
2 Flast ← m_chain.getLast();
3 foreach outgoing edge e = (Flast, Fcand) from F do
4 foreach v ∈ F do
5 if Fcand.matches(v) ∧ ¬I.hasKey(Fcand, v) then
6 I.insert(Fcand, v);
7 if PQ.hasKey(Fcand) then
8 PQ.increasePrio(Fcand)

9 else PQ.insert(F )

10 if ¬PQ.empty() then
11 F ← PQ.extractMin();
12 m_chain.add(F );
13 return true;

14 else return false

of fragments, we parallelize the execution of the scan if necessary
and materialize operations within a single column fragment. An
FI-traversal runs in a series of iterations, where we process one frag-
ment per iteration. At the beginning of each iteration, the algorithm
getNextFragment receives a set of frontier vertices and returns
the next fragment F to read. A fragment contains the start and end
position in the column and limits the scan to that range. Initially, we
pass the set of start vertices as frontiers to getNextFragment.
The body of the main loop performs a scan operation and a material-
ize operation (Lines 9–10). The scan takes the first sFactor working
sets from the traversal iterations and returns matching edges in the
corresponding position lists from the vector of position lists P . For
example, an n-way scan with sFactor=2 probes the column with two
vertex sets from two different traversal iterations and returns match-
ing edges into two position lists. Subsequently, newly discovered
adjacent vertices are materialized in a similar multi-way manner as
in the scan operation. Depending on the mFactor, we read out the
collected position lists and add adjacent vertices to the working sets
from Dw. In addition, newly discovered vertices are added to the
set of frontier vertices Frontiers. Once the recursion boundary is
reached, the traversal reads and processes all remaining fragments
from the fragment queue. If getNextFragment does not return
any more fragments, the traversal terminates and generates the final
result according to the given collection and recursion boundaries
(Line 11).

Candidate Fragment Selection. Algorithm 3 describes in detail
how to find the next fragment to read given a set of frontier ver-
tices. It starts with the last processed fragment and probes adjacent
fragments for matching vertices. For each adjacent fragment, we
consult its fragment synopsis and compare the frontiers against it. If
a frontier matches, we update the fragment queue accordingly. If the
fragment is already in the queue, we increase its priority, otherwise
we insert it. Further, we invalidate vertices in the synopses that trig-
gered the candidate fragment selection. We keep invalidated vertices
and their corresponding fragments in an invalidation list I (Line 6).
Finally, we return the fragment with the highest priority from the
fragment queue and append it to the execution chain. Since the
fragment synopses are implemented as compact bloom filters, false
positive fragments can occur. However, a false positive does not
harm the traversal functionally. There is a tradeoff between space
consumption and execution time for the fragment synopses. We
evaluate the effect of the size of a bloom filter in the experimental
evaluation. Since the value distribution in fragments might vary,
each bloom filter can have a different size depending on the number
of distinct values present in the fragment.

Cost Model. The cost model of the FI-traversal is slightly more
complex than for the LS-traversal since the calculation of the costs
depends on a larger set of input parameters. The costs of an FI-
traversal can be directly related to the number and the size of the
accessed fragments. Hence, we can use the chain of read fragments
Fp to derive the cost of the FI-traversal. The overall cost is the
accumulated cost of the reads for all accessed fragments in Fp.
Consequently, the traversal cost is not directly dependent on the
number of traversal iterations anymore. We define the cost CFI of an
FI-traversal in Equation 5 as follows.

CFI =

min{r,δ̃}∑
i=0

(1 + p)(d̄out)
i · ξ · Ce (5)

The cost depends on the average false positive rate p, the average
vertex outdegree d̄out, and the fragment size ξ. The FI-traversal
is bounded by the minimum of the recursion boundary r and the
estimated effective graph diameter δ̃. The most important factors
effecting the memory consumption of the TGI are the size and
number of fragments. We can minimize the memory consumption
of the TGI by grouping edges by source vertex (see edge clustering
in Section 6). Then, each vertex with incoming and outgoing edges
contributes exactly once to a single fragment transition. For equally-
sized fragments, we have to choose a fragment size that is as large
as the largest vertex out-degree. Therefore, we also propose to
provide a heterogeneous fragment size distribution that is always
larger than a predefined minimum fragment size. The upper size
is determined automatically by the vertex out-degree. We discuss
these configuration parameters and their performance implications
for the FI-traversal in detail in the evaluation in Section 7.

6. TOPOLOGY-AWARE CLUSTERING
The basic implementation of the LS-traversal algorithm does not rely
on a particular ordering of the edges in the edge column group. How-
ever, to fully leverage the benefits of a main-memory storage engine,
we can use data access patterns that provide a more efficient access
to data placed in memory. Therefore, a physical reorganization of
records is a common optimization strategy to reduce data access
costs [6]. In the following, we describe two strategies to further
reduce the overall execution time of the LS-traversal algorithm by
maximizing the spatial locality of memory accesses to reduce the
number of records to scan.

Type Clustering

Edge Clustering

Vs Vt Type

D F a
A D a
A B a
A C a
E B a
E G a
D B b
B E b
F G b

Figure 7: Clustered
Edges.

Type Clustering. Typically, real-world graph
data sets are modeled with a widespread and
diverse set of edge types that connect the ver-
tices in the graph. Conceptually, an edge type
describes a subgraph and can be interpreted as
a separate layer or view on top of the original
data graph. Such multi-relational graphs with
multiple edge types are common in a variety of
scenarios, such as product batch traceability,
social network applications, or material flows
graphs. For example, a product rating website
might store different relationships between en-
tity types rating, user, and product, such as
rating relationships, product hierarchies, and
user fellowships. To that end, traversal queries are specific with
regard to which parts of the graph they refer to. We propose to
arrange edges sharing the same type physically together, allowing
a traversal query to operate directly on the subgraph instead of the
entire original graph. Thus, a graph that comprises n different edge
types results in n different subgraphs. A subgraph is associated



with an area in the column that contains all edges forming the sub-
graph. Figure 7 illustrates an edge column group with two edge
types. Here, a traversal query that refers to edges of type b would
only have to scan the corresponding subgraph. The portion of the
column for edge type b is indicated by the dashed lower rectangle.
If the edge predicate contains a disjunctive condition, for example
to traverse only over edges of type a or b, the LS-traversal algorithm
automatically splits the scan operation and unions the partial results
thereafter.

Edge Clustering. The most fundamental component of a traversal
operation is to retrieve the set of adjacent vertices for a given ver-
tex. Therefore, an efficient traversal implementation must provide
efficient access to adjacent vertices located in main memory. To
achieve this, we introduce the notion of topological locality in a
graph. Topological locality describes a concept for accessing all
vertices adjacent to a given vertex v ∈ V . If a neighboring vertex of
a vertex v is accessed, it is likely that all other vertices adjacent of v
are accessed also.

We translate topological locality in a graph directly into spatial
locality in memory by grouping edges based on their source vertex.
Such an edge clustering increases spatial locality, i.e., all edges
sharing the same source vertex are written consecutively in memory.
Maximizing spatial locality for memory accesses results in a better
last-level cache utilization and minimizes the amount of data to be
loaded from main memory into the last-level cache of the proces-
sor [10]. Figure 7 sketches an example for vertex A. All edges
having A as source vertex are written consecutively into the edge
column group. To that end, applying first clustering by type and then
by edge extends the physical reorganization on a second level. Espe-
cially the materialization step of an LS-traversal algorithm benefits
from an increased spatial locality while fetching adjacent vertices
from the Vt column (see Line 12 in Algorithm 1).

Besides the spatial locality, column decompression plays an im-
portant role in materializing adjacent vertices. Major in-memory
database vendors rely on a two-level compression strategy. The
first level is dictionary encoding, where a value is represented by its
numerical value code from the dictionary and stored in a bit-packed,
space-efficient data container. Here, a lightweight, but still notable
decompression routine is used to reconstruct the actual value code.
If adjacent vertices are not stored in a consecutive chunk of memory,
the decompression routine might decompress unnecessary value
codes. A similar behavior can be observed on the second level of
compression, the value-based block compression. Edge clustering
allows retrieving blocks of value codes that can be reconstructed
efficiently by leveraging SIMD instructions.

7. EVALUATION
We evaluate the LS-traversal and the FI-traversal on a diverse set
of real-world graphs and for different types of graph queries. In
the following, we describe the environmental setup and provide
statistical information about the evaluated data sets. We present
an extensive experimental evaluation of the memory consumption,
execution time, cost model, and system-level comparison with two
native graph management systems.

Environmental Setup and Data Sets
We have implemented GRAPHITE as a prototype in the context of
the in-memory column-oriented SAP HANA database system. Graph
data in SAP HANA is stored in two column groups, where each
group has its own read-optimized main storage and write-optimized
delta storage. Data manipulation operations exclusively modify the
delta storage, which is periodically merged into the main storage.

ID |V | |E| d̄out max(dout) δ̃ Size (MB)

CR 1.9 M 2.7 M 2.8 12 495.0 143
LJ 4.8 M 68.5 M 28.3 635 K 6.5 1 617
OR 3.1 M 117.2 M 76.3 32 K 5.0 3 066
PA 3.7 M 16.5 M 8.7 793 9.4 397
SK 1.7 M 11.1 M 13.1 35 K 5.9 305
TW 40.1 M 1.4 B 36.4 2.9 M 5.4 32 686

Table 1: Evaluated data sets with their topology statistics.
Deletions only invalidate records and affected records are being
removed during the next merge process. Within the scope of this
paper, we focus on read-only graphs, but argue that the proposed
algorithms could be easily extended to support dynamic graphs as
well (for example by treating the delta storage as a single fragment
and by using general visibility data structures, such as a validity
vector, to check for deletions). All values are dictionary-encoded
allowing the traversal algorithms to operate on the value codes
directly. Initially, we loaded the data sets into their corresponding
vertex and edge column groups, and populate the TGI. We ran
the experiments on a single server machine running SUSE Linux
Enterprise Server 11 (64 bit) with Intel Xeon X5650 running at
2.67 GHz, 6 cores, 12 threads, 12 MB L3 cache shared, and 48 GB
RAM. For the LS-traversal we leverage full parallelization with
12 threads, for the FI-traversal we use 1 thread to scan a single
fragment. To evaluate our approach on a wide range of different
graph topologies, we selected six real-world graph data sets from
the domains: social networks (OR,TW,LJ), citation networks (PA),
autonomous system networks (SK), and road networks (CR). For
each data set, we report the number of vertices |V |, the number of
edges |E|, the average vertex outdegree d̄out, the maximum vertex
outdegree max(dout), the estimated graph diameter δ̃, and the raw
size of the graph in Table 1.

All evaluated queries are of the form {{ s } , ’*’, k, k,→}, where
s is a randomly selected start vertex, ∗ refers to a nonselective edge
filter, and k denotes the traversal depth. Without losing generality,
we focus in the evaluation on traversal queries where the collection
boundary is equal to the recursion boundary. Such traversal queries
only return vertices first discovered in traversal iteration k. For
the runtime analysis, we randomly selected start vertices for the
traversal and report the median execution time over 50 runs. We
decided to report the median since the execution highly varies for
different start vertices.

We compare our LS-traversal and FI-traversal implementations
against two join-based approaches (with and without secondary in-
dex support) in SAP HANA, the open-source version of Virtuoso
Universal Server 7.1 [13], and the community edition of the na-
tive graph database management system Neo4j 2.1.3 [3]. For the
experiments we prepared and configured the evaluated systems as
follows:

SAP HANA. We populated the data sets into two columnar tables,
one for vertices and one for the edges. For the indexed join, we
created a secondary index on the source vertex column.

Virtuoso. Since Virtuoso is an RDF store, we transformed all
data sets into RDF triples of the form <source_id> <edge_type>

<target_id> and use SPARQL property paths to emulate a breadth-
first traversal. We increased the number of buffers (NumberOfBuffers)
and maximum dirty buffers (MaxDirtyBuffers) as recommended.

Neo4j. We configured the object caches of Neo4j so that the data set
fits entirely into memory. We warmed up the object cache by running
randomly 10000 traversal queries against the database instance. To
run the experiments, we used Neo4j’s declarative query lanuage
Cypher and created an additional index on the vertex identifier
attribute.
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Figure 8: TGI memory consumption for different false positive rates
and fragment sizes.
TGI Memory Consumption
In this experiment we study the effect of various algorithm param-
eter configurations on the memory consumption of the TGI. We
populated TGI instances for clustered physical edge ordering with
different fragment sizes and false positive rates, and present the
results in Figure 8. To evaluate the impact of the fragment size ξ,
we construct the TGI for different fragment sizes 26, . . . , 216 and
a fixed average false positive rate of 1%. We analyze the effect
of the average false positive rate for a representative fragment size
ξ = 512 and construct fragment synopses based on an average false
positive rate p selected from {1%, 5%, 10%, 20%}.

The size of the TGI is directly related to the total number of
edges of the original input graph. For fragment size ξ = 1024,
the TGI consumes only about 10% of the size of the input graph.
For ξ = 1024, the TGI of data set TW has the highest memory
consumption with about 2.09 GB (about 8.4% of the raw size of the
graph) and data set CR the lowest memory consumption (about 8.8%
of the raw size of the graph). For disabled clustering by edge, the
memory consumption of the TGI can grow up to a factor of 10 of the
original graph. This makes the unclustered variant of the FI-traversal
impractical for a productive system as it occupies up to two orders
of magnitude the memory of the clustered variant.

Impact of Fragment Size. For all evaluated data sets, the memory
footprint decreases for increasing fragment sizes. A larger fragment
size leads to a smaller number of vertices in the TGI and conse-
quently to fewer possible transitions between them. Although larger
fragments cause a denser TGI topology, the total number of frag-
ment transitions is much lower than for smaller fragments. For input
graphs with a larger average vertex outdegree, the memory overhead
can be reduced for ξ = 216 to up to 13% of the memory overhead
for ξ = 26. For very sparse graphs, such as CR, the TGI consumes
about 37% of the memory for ξ = 216 compared to ξ = 26. Conse-
quently, the sparser the input graph is, the lower is the impact of the
fragment size on the total memory consumption of the TGI.

Impact of False Positive Rate. We store fragment synopses in
space-efficient bloom filter data structures, where each fragment
synopsis occupies as much memory as needed to fulfill the prede-
fined false positive rate. A smaller false positive rate causes the
FI-traversal to access more fragments, but reduces the memory foot-
print of the TGI. We show the memory overhead for different false
positive rates in Figure 8. For data set PA, a false positive rate of
20% leads to a memory footprint decrease of 13% compared to a
false positive rate of 1%. In contrast, data set CR reached a mem-
ory footprint decrease of almost 50% for p = 20% compared to
p = 1%.

Runtime Analysis
Figure 9 presents the runtime results of the LS-traversal for all data
sets and with different traversal queries. We report average execu-
tion times of the three traversal phases preparation, traversal, and
decoding as well as average output sizes. In general, the traversal
phase dominates the overall execution time of the traversal operator
and consumes up to 95% of the total runtime. The runtime of the
preparation phase is only about 5% of the overall execution time
and is independent from the number of traversal iterations. The
preparation phase only evaluates the edge predicate and processes
the start vertices. The decoding phase highly depends on the size
of the vertex output set as it translates for each vertex the value
code back into the corresponding vertex identifier. For the data set
SK, we can see the effect of the output size on the runtime spent
for the decoding. The output size of the traversal steadily grows
until the traversal reaches the effective diameter. Consequently, only
very few traversals reach a larger traversal depth than the effective
diameter. The LS-traversal scales almost linearly with increasing
number of traversal iterations as the full column scan takes about
the same time to complete independent of the traversal iteration.

Figure 10 presents an in-depth comparison of LS-traversal and
FI-traversal on all data sets for fragment sizes {27, . . . , 210}. Larger
fragment sizes resulted in higher execution times and are therefore
omitted in the results. For all evaluated data sets, LS-traversal shows
a linear runtime behavior for an increasing number of traversal
iterations. For the data set PA, the runtime steadily increases until the
LS-traversal reaches the effective diameter. After the traversal query
reached the effective diameter, the plot flattens for longer traversal
queries. In comparison, the data plots of the FI-traversal grow much
faster for an increasing number of traversal iterations. For short
traversals with a low number of traversal iterations, the FI-traversal
outperforms the LS-traversal by up to two orders of magnitude. This
can be explained by the more fine-granular graph access pattern of
the FI-traversal. Especially the first traversal iterations process only
very small parts of the whole graph and a fine-granular fragment
access clearly outperforms a full column scan. For a large working
set, potentially many fragments have to be accessed which in turn
is hard to predict and prefetched by the hardware. If large parts
of the graph are accessed, a single full column scan is superior
compared to many small fragment scans. The break-even point
when the FI-traversal outperforms the LS-traversal depends on the
graph topology and the given traversal query. From the results we
can conclude that short traversal queries clearly favor the FI-traversal
over the LS-traversal. Even for short traversal queries, both data sets
produce large intermediate results due to the power-law distribution
of vertex outdegrees making the FI-traversal less effective. For 4
out of 6 data sets, the FI-traversal outperforms the LS-traversal for
traversal queries with r ≤ 5. The fragment size has a severe impact
on the overall execution performance of the FI-traversal. For data
set CR, the fragment size does not only effect the total runtime, but
also increases the range of traversal queries, where the FI-traversal
outperforms the LS-traversal. For example, a traversal query with
traversal depth 14 on data set CR consumes only about 26% of the
runtime than for ξ = 210 for a fragment size ξ = 27. In general,
we can conclude that FI-traversal is superior to LS-traversal for very
sparse graphs or for short traversal queries.

Figure 11 depicts the slowdown factors for all data sets with
different fragment sizes {26, . . . , 216}. To compute the slowdown
factor, we use the data point for the smallest fragment size/false
positive rate as baseline and relate all other results to this baseline.
Further, we analyze the effect of the false positive rate on the query
runtime. Without losing generality, we conduct all experiments on
a representative query of the form {{ s } , ’*’, 3, 3,→}. In general,
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Figure 9: Execution time and output size of LS-traversal for different queries and data sets.

the FI-traversal with enabled edge clustering finished the execution
on average about 3.5 times faster than for the unclustered variant.
If the graph is not clustered by edge, the probability of a transition
to another fragment is significantly higher due to a higher number
of distinct values in the fragment. For enabled edge clustering, the
maximum number of possible transitions is bounded by the number
of vertices in the graph. For all data sets, smaller fragment sizes
close to the expected average vertex outdegree are more beneficial
with respect to execution performance than larger ones. Although
one could specify a fragment size that is very small or even close
to 1, the memory overhead would be prohibitively high. Therefore,
we limit the minimum fragment size to be connected to the vertex
outdegree.

A larger false positive rate increases the memory consumption of
the TGI, but speeds up the runtime of the FI-traversal. If the false
positive rate is too large, many fragments are read although they do
not contribute to the traversal query result.

Impact of Edge Predicates. We study the effect of edge predicates
on the query performance of the LS-traversal and the FI-traversal
in Figure 12. An edge predicate selects a subgraph of the entire
data graph and limits the traversal to a subset of active edges. We
generated edge weights following a zipfian distribution with s = 2
and assigned them randomly to the edges. For a selectivity of 25%,
i.e., an edge predicate that selects only 25% of all edges leads for the
LS-traversal to a speedup of 3. We observed that an edge predicate
with a low selectivity drastically reduces the size of intermediate and
final output results. Since the LS-traversal is a scan-based traversal
algorithm, it still has to scan the entire column for each traversal
iteration. In contrast, the FI-traversal reaches a speedup of up to
factor 6 for a selectivity of 25%. If the selectivity is low, more
fragments can be pruned during the traversal and cause the doubled
speedup compared to the LS-traversal .

System-Level Benchmarks. We compared our two traversal imple-
mentations with a purely relational self-join-based approach (with
and without secondary index support), Neo4j, and Virtuoso 7.0.
For the join-based traversal, we use the same data layout as for
GRAPHITE and leverage the columnar relational engine of SAP
HANA. We present our results in Figure 13. For short traversals of
1–3 hops, our FI-traversal is competitive with native graph imple-
mentations from Neo4j and Virtuoso. For data sets PA, SK, and CR
FI-traversal outperforms all evaluated systems by up to an order of
magnitude.

Cost Model Evaluation
To verify our cost model function, we applied regression analysis.
We use the coefficient of determination denoted R2 to evaluate the
quality of our FI-traversal cost model. The coefficient of determina-
tion has a value range of −1 ≤ |R2| ≤ 1. A value of |R2| close to
1 indicates a good fit of the proposed cost model function with the
manually collected data points. We compare the manually collected
data of the number of accessed edges against the results of the cost
function. For each data set, we performed a set of traversal queries
with a recursion boundary ranging from 1 to 10. We achieved the
best result with an average R2 = 0.92 for data set CR, respectively.
For the data set EP, we achievedR2 = 0.78. In general, graphs with
a power-law vertex outdegree distribution caused our cost function
to underestimate the costs of the FI-traversal. This underestimation
can be explained by the method used to describe the vertex out-
degree distribution. We use the average vertex outdegree d̄out to
estimate the expected number of neighbors for a single vertex. If the
traversal discovers a vertex with a considerably larger vertex outde-
gree, the cost function underestimates the access costs. Additionally,
the traversal depth is estimated as the minimum of the recursion
boundary and the diameter of the graph. However, traversal queries
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Figure 10: Comparison of LS-traversal and FI-traversal for different
queries and data sets.
that terminate before they reach the recursion boundary, are not ap-
propriately reflected in the cost function. We believe that additional
information about the outdegree distribution and the distribution of
path lengths is required to obtain a more accurate estimation from
the cost function.

8. RELATED WORK
Graph Traversal Algorithms. Graph traversals are one of the
most important and fundamental building blocks of graph algo-
rithms, such as finding shortest paths, computing the maximum
flow, and identifying strongly connected components. Increasing
graph data sizes and the proliferation of parallelism on different
hardware levels as well as heterogeneous processor environments
encouraged researchers to revise the well-known breadth-first graph
traversal and to propose novel techniques to run graph traversals
on high-end computers with large numbers of cores and different
types of processors on a single machine. A large body of research
has been conducted on efficient parallel graph traversals, lately even
leveraging co-processors to speed up graph processing on large data
graphs [17]. State-of-the-art parallel graph traversals operate with
a level-synchronous strategy and parallelize the work to be done at
each level. However, all parallel graph traversal implementations
rely on sophisticated data structures that are tailored to the graph
traversal algorithm. Such an algorithm-dependent data structure is
not applicable in our case since we are using the traversal operator in
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Figure 11: Execution time of FI-traversal for {{ s } , ’*’, 3, 3,→}.
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Figure 12: Speedup in multiples of baseline for different edge
predicate selectivities with query {{ s } , ’*’, 3, 3,→}. The baseline
is a traversal query without edge predicate, i.e., a traversal on the
entire graph.
an RDBMS on top of a common storage engine without copying data
into separate data structures. As one of our strongest advantages,
we do not require the graph data to be copied from possibly already
existing legacy relational tables into algorithm-specific data struc-
tures. Replicating data into separate data structures wastes memory
and also adds a considerable maintenance overhead. Chhugani et al.
study scalable breadth-first traversal algorithms on modern hardware
with multi-socket, multi-core processor architectures [12, 27]. They
achieved an impressive performance by tuning the data structures
and the traversal algorithm to the underlying hardware. In contrast
to our approach, they only consider a single implementation of
graph traversals for any graph topology and types of graph traversal
queries. Graph traversals in distributed memory recently gained
more attention and resulted in the development of sophisticated data
partitioning schemes for distributed graph traversals [11, 26].

Graph Processing on Column Stores. Column stores have shown
great potential for storing and querying wide and sparse data [4].
These considerations brought up research projects that aimed to pro-
vide efficient access to RDF [7] and XML data [30] kept in a column
store. However, none of them covered the design and implementa-
tion of a native graph traversal operator that leverages advantages of
columnar data structures and exploits knowledge about the graph
topology to speed up the graph traversal execution.

Distributed Graph Engines. The demand to efficiently process
real-world billion-scale graphs triggered the development of a vari-
ety of distributed graph processing systems [15, 18, 21, 22]. GBase
is a distributed graph engine based on MapReduce and relies on
distributed matrix-vector multiplications [18]. The vertex-centric
programming model, as proposed by [22], has been an area of
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Figure 13: System-level benchmarks of LS-traversal, FI-traversal,
VIRTUOSO, NEO4J, and a self-join-based approach (with and with-
out secondary index support). Since the execution times highly vary
for different start vertices, we report median execution times. We
were not able to run experiments for the Twitter data set on Neo4j
due to data loading issues.
active research and has been implemented in GraphLab [21] and
PowerGraph [15] among others. Although distributed graph en-
gines show good scalability for billion-scale graphs, we see the
following disadvantages making them not applicable in our scenar-
ios: (1) Business data from enterprise-critical applications is still
mainly stored in RDBMS and cannot be easily replicated to external
graph processing engines; (2) typically, graph engines cannot cope
with cross-data-model operations (e.g., combining text, graph, and
spatial); (3) distributed graph engines rely on sophisticated graph
partitioning algorithms that do not scale well to large graphs and are
hard to maintain for dynamic graphs; and (4) they do not provide
transactional guarantees.

Single-Machine Graph Engines. An interesting alternative to dis-
tributed graph engines has been introduced by Kyrola et al. [19] and
conceptually extended by Han et al. [16]. GraphChi is a disk-based
graph engine on a single machine that exploits parallel sliding win-
dows and sharding to efficiently process billion-scale graphs from
disk [19]. To minimize I/O overhead, they apply a technique similar

to edge clustering to improve disk access and maximize data locality
on disk. The lack of support for attributes on vertices and edges
and dynamic graphs resulted in GraphChi-DB, a recent extension of
GraphChi [20]. Interestingly, they also use a vertically partitioned
layout to represent attributes on vertices and edges. In contrast to
GraphChi we run GRAPHITE not as a standalone graph engine, but as
part of a graph runtime stack on a common relational storage engine
in an RDBMS. Since our targeted scenarios run on main-memory
RDBMS, GRAPHITE can operate completely in memory and aims at
maximizing CPU cache locality. Similar to GraphChi is TurboGraph,
a single-machine disk-based graph processing engine using solid
state disks (SSD) to store and process large graphs [16]. They use a
vertically partitioned layout on SSD to store vertex attributes. How-
ever, we do see two major drawbacks compared to our approach:
(1) GraphChi and TurboGraph are efficient single-machine graph
engines, but do not provide transactional access to the data; and (2)
graph data has to be available upfront in a specific data format on
disk. To be applicable for business data stored in RDBMS, the data
has to be exported and transformed into a file format that can be
consumed by the system.

Graph Databases. A different direction is followed by graph data-
bases, such as Neo4j [3], Sparksee [23], and InfiniteGraph [2].
While Neo4j relies on a disk-based storage accelerated by buffer
pools to store recently accessed parts of the graph, Sparksee allows
manipulating and querying the graph in memory. The Sparksee
internal data structures rely on efficient bitmaps, which represent
the set of vertices and edges describing the graph [23]. All graph
databases are specialized engines that can perform graph-oriented
processing efficiently, but always require loading possibly relational
business data in advance from other data sources. On the contrary,
our approach can directly operate on the relational business data
without having to copy it to a dedicated database engine. Moreover,
the combination of relational operations and graph operations can
be handled efficiently by a single database engine.

Graph Processing in RDBMS. Although graph databases are a
rather new research field, path traversals in relational databases with
the help of recursive queries have been in the focus of research
for more than 20 years now [8]. There have been proposals for
extending relational query languages with support for recursion
in the past and even the SQL:1999 standard offers recursive com-
mon table expressions. However, commercial database vendors
often provide their own proprietary functionality, if they do at all.
Gao et al. leverage recent extensions to the SQL standard, such as
window functions and merge statements, to implement algorithms
for shortest path discovery on relational tables [14]. Unlike our
approach, they are reusing existing relational operators and the rela-
tional query optimizer to create an optimal execution plan. However,
when ignoring graph-specific statistics, the optimizer is likely to
select a suboptimal execution plan. Magic-set transformations are a
query rewrite technique for optimizing recursive and non-recursive
queries, which was originally devised for Datalog [9] and has been
extended for SQL [25]. Since graph traversals can be expressed as
recursive database queries, the magic-sets transformation could also
be applied to them. However, instead of proposing an optimization
strategy for relational execution plans, we approach the problem
with a dedicated plan operator.

9. CONCLUSION
We presented GRAPHITE, a modular and versatile graph traversal
framework for main-memory RDBMS. As part of GRAPHITE, we



presented two different specialized traversal implementations named
LS-traversal and FI-traversal to support a wide range of different
graph topologies and varying graph traversal queries most efficiently.
GRAPHITE is extensible and other graph traversal strategies, such
as depth-first based traversals, could be integrated as well. We
derived a basic cost model of two traversal implementations and
experimentally showed that it can assist a query optimizer to select
the optimal traversal implementation. The FI-traversal outperforms
the LS-traversal for graphs with a low density and short traversal
queries by up to two orders of magnitude. In contrast, the LS-
traversal performs significantly better than the FI-traversal, if the
graph is dense or the query traverses a large fraction of the whole
graph. Our experimental results illustrate the need for a graph
traversal framework with an accompanied set of traversal operator
implementations. Finally, we show that, despite popular belief,
graph traversals can be efficiently implemented in RDBMS on a
common relational storage engine and are competitive with those of
native graph management systems.
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