
ON FINITE GROUPS WITH GIVEN ICΦ-SUBGROUPS

JULIAN KASPCZYK

Abstract. A subgroup H of a group G is said to be an ICΦ-subgroup of G if H∩ [H,G] ≤ Φ(H).
We analyze the structure of a finite group G under the assumption that some given subgroups of
G are ICΦ-subgroups of G. A new characterization of finite abelian groups and some new criteria
for 2-nilpotence and nilpotence of finite groups will be obtained. Moreover, we will obtain two
criteria for a finite group to lie in a given solvably saturated formation containing the class of
finite supersolvable groups.

1. Introduction

All groups in this paper are implicitly assumed to be finite. Our notation and terminology are
standard. The reader is referred to [6, 10, 14] for unfamiliar definitions on groups and to [7] for
unfamiliar definitions on classes of groups.

Given a group G and a subgroup H of G, we say that H is an ICΦ-subgroup of G provided that
H ∩ [H,G] ≤ Φ(H). This concept was introduced by Gao and Li in [5] and further investigated by
the author in [12]. The papers [5] and [12] contain results that constrain the structure of a group
G under the condition that some given subgroups of G are ICΦ-subgroups of G. The following
theorem is the main result of [12].

Theorem 1.1. ([12, Theorem 1.3]) Let p be a prime dividing the order of a group G, and let
P be a Sylow p-subgroup of G. Suppose that there is a subgroup D of P with 1 < |D| ≤ |P |
such that any subgroup of P with order |D| is an ICΦ-subgroup of G. If |D| = 2 and |P | ≥ 8,
assume moreover that any cyclic subgroup of P with order 4 is an ICΦ-subgroup of G. Then G
is p-nilpotent.

The goal of the present paper is to further study how the structure of a group is influenced by
its ICΦ-subgroups. Our results show, together with [5] and [12], that one often gets very rich
information about a group when some of its subgroups are assumed to be ICΦ-subgroups.

Groups some of whose primary subgroups are ICΦ-subgroups. Let Q8 denote the quater-
nion group with order 8. Recall that a group G is said to be Q8-free if no section of G is isomorphic
to Q8. Our first main result is the following improvement of Theorem 1.1 and [5, Theorem 3.1].

Theorem 1.2. Let G be a Q8-free group such that any subgroup of G with order 2 is an ICΦ-
subgroup of G. Then G is 2-nilpotent.

The condition in Theorem 1.2 that G is Q8-free is really necessary. For example, Z(SL2(3)) is
the only subgroup of SL2(3) with order 2, and Z(SL2(3)) is an ICΦ-subgroup of SL2(3). But
SL2(3) is not 2-nilpotent.

Our second main result is a generalization of the following result of Gao and Li.

Theorem 1.3. ([5, Theorem 3.5]) Let G be a group, and let E be a normal subgroup of G such that
G/E is supersolvable. If every maximal subgroup of every Sylow subgroup of E is an ICΦ-subgroup
of G, then G is supersolvable.
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To state our generalization of Theorem 1.3, we recall some definitions. A class of groups F is
said to be a formation if F is closed under taking homomorphic images and subdirect products.
A formation F is said to be saturated if whenever G is a group with G/Φ(G) ∈ F, we have G ∈ F.
We say that a formation F is solvably saturated if whenever G is a group and N is a solvable
normal subgroup of G with G/Φ(N) ∈ F, we have G ∈ F. Note that every saturated formation is
solvably saturated.

The class of all supersolvable groups is denoted by U. It is well-known that U is a saturated
and hence a solvably saturated formation.

With these definitions at hand, we can now state our second main result.

Theorem 1.4. Let F be a solvably saturated formation containing U, let G be a group, and let E
be a non-trivial normal subgroup of G such that G/E ∈ F. Let t := |π(E)|, and let p1 < · · · < pt be
the distinct prime divisors of |E|. For each 1 ≤ i ≤ t, let Pi be a Sylow pi-subgroup of E. Suppose
that, for each 1 ≤ i ≤ t, either Pi is cyclic or there is a subgroup Di of Pi with 1 < |Di| ≤ |Pi|
such that any subgroup of Pi with order |Di| is an ICΦ-subgroup of G. If p1 = 2, |D1| = 2 and P1

is not Q8-free, assume moreover that any cyclic subgroup of P1 with order 4 is an ICΦ-subgroup
of G. Then G ∈ F.

Theorem 1.3 is covered by Theorem 1.4. Also, the proof of Theorem 1.4 given here is shorter
than the proof of Theorem 1.3 given in [5].

Our third main result shows that Theorem 1.4 remains true when we replace the assumption
that the subgroups P1, . . . , Pt are Sylow subgroups of E by the assumption that they are Sylow
subgroups of the generalized Fitting subgroup F ∗(E) of E.

Theorem 1.5. Let F be a solvably saturated formation containing U, let G be a group, and let E be
a non-trivial normal subgroup of G such that G/E ∈ F. Let t := |π(F ∗(E))|, and let p1 < · · · < pt
be the distinct prime divisors of |F ∗(E)|. For each 1 ≤ i ≤ t, let Pi be a Sylow pi-subgroup of
F ∗(E). Suppose that, for each 1 ≤ i ≤ t, either Pi is cyclic or there is a subgroup Di of Pi with
1 < |Di| ≤ |Pi| such that any subgroup of Pi with order |Di| is an ICΦ-subgroup of G. If p1 = 2,
|D1| = 2 and P1 is not Q8-free, assume moreover that any cyclic subgroup of P1 with order 4 is
an ICΦ-subgroup of G. Then G ∈ F.

All the above theorems are concerned with groups G such that some primary subgroups of G
are ICΦ-subgroups of G. It is natural to ask what we can say about the structure of a group G
when every primary subgroup of G is an ICΦ-subgroup of G. Clearly, any abelian group has this
property. Also, one can check that any subgroup of Q8 is an ICΦ-subgroup of Q8. Our fourth
main result characterizes the abelian groups as the Q8-free groups all of whose primary subgroups
are ICΦ-subgroups.

Theorem 1.6. Let G be a group. Then the following are equivalent:

(1) G is abelian.
(2) G is Q8-free, and any subgroup of G is an ICΦ-subgroup of G.
(3) G is Q8-free, and any primary subgroup of G is an ICΦ-subgroup of G.

Groups all of whose maximal, 2-maximal or 3-maximal subgroups are ICΦ-subgroups.
Let n be a positive integer, and let G be a group. A subgroup H of G is said to be n-maximal in
G if there is a chain of subgroups H = H0 < H1 < · · · < Hn = G, where Hi is maximal in Hi+1

for all 0 ≤ i ≤ n− 1.
There are many results in finite group theory that describe the structure of a group G under

the assumption that, for a given positive integer n, all n-maximal subgroups of G satisfy a given
property.

Perhaps the most well-known result of this kind is due to Wielandt, who proved that a group G
is nilpotent if every maximal subgroup of G is normal in G (see [10, Kapitel III, Hauptsatz 2.3]).
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Huppert proved that a group G is supersolvable if every 2-maximal subgroup of G is normal in
G (see [9, Satz 23]) or if |G| is divisible by at least three primes and every 3-maximal subgroup
of G is normal in G (see [9, Satz 24]). Janko proved that a solvable group G is supersolvable if
every 4-maximal subgroup of G is normal in G and |G| is divisible by at least four primes (see
[11, Theorem 3]). Huppert’s and Janko’s results were strengthened by Asaad [1].

Mann [15] proved a number of structural results about groups whose n-maximal subgroups, for
some positive integer n, are subnormal. In the last decade, a number of results have been obtained
on groups whose n-maximal subgroups, for some positive integer n, satisfy certain properties
generalizing subnormality, see for example [13, 16, 17, 18] (some of these results only deal with
the case n = 2).

Other recent results on n-maximal subgroups and their influence on the structure of groups
were obtained for example in [3, 4, 19].

As a development of the research on n-maximal subgroups, we will prove the following three
theorems.

Theorem 1.7. Let G be a group such that any maximal subgroup of G is an ICΦ-subgroup of G.
Then G is nilpotent.

Theorem 1.8. Let G be a group. Suppose that G has a non-trivial 2-maximal subgroup and that
any 2-maximal subgroup of G is an ICΦ-subgroup of G. Then G is nilpotent.

Theorem 1.9. Let G be a group. Suppose that G has a non-trivial 3-maximal subgroup and that
any 3-maximal subgroup of G is an ICΦ-subgroup of G. Then either G is nilpotent or G ∼= SL2(3).

2. Preliminaries

In this section, we collect some results needed for the proofs of our main results.

Lemma 2.1. ([5, Lemma 2.1]) Let G be a group, H be an ICΦ-subgroup of G, and N be a normal
subgroup of G. Then the following hold:

(1) If H ≤ K ≤ G, then H is an ICΦ-subgroup of K.
(2) If N ≤ H, then H/N is an ICΦ-subgroup of G/N .
(3) If H is a p-group for some prime divisor p of |G| and N is a p′-group, then HN/N is an

ICΦ-subgroup of G/N .

Lemma 2.2. Let G be a group possessing a proper non-trivial ICΦ-subgroup H. Then G is not
simple.

Proof. Since H is an ICΦ-subgroup of G, we have H ∩ [H,G] ≤ Φ(H). If G = [H,G], then it
follows that H ≤ Φ(H), which is impossible. Therefore, [H,G] is a proper subgroup of G. Also,
[H,G] is normal in G. If [H,G] 6= 1, it follows that G is not simple. If [H,G] = 1, then H ≤ Z(G),
and again it follows that G is not simple. �

Lemma 2.3. Let G be a group, and let H be an ICΦ-subgroup of G. Suppose that G′ ≤ H. Then
G is nilpotent.

Proof. We have [G′, G] ≤ H∩[H,G] ≤ Φ(H). Applying [10, Kapitel III, Hilfssatz 3.3], we conclude
that [G′, G] ≤ Φ(G). It follows that

[(G/Φ(G))′, G/Φ(G)] = [G′Φ(G)/Φ(G), G/Φ(G)] = [G′, G]Φ(G)/Φ(G) = 1.

So the lower central series of G/Φ(G) terminates at 1. Consequently, G/Φ(G) is nilpotent, and
[10, Kapitel III, Satz 3.7] implies that G is nilpotent. �

Lemma 2.4. ([7, Theorem 3.4.11], [10, Kapitel III, Satz 5.2]) Let G be a minimal non-nilpotent
group. Then:
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(1) |G| = paqb with distinct prime numbers p, q and positive integers a, b, where G has a
normal Sylow p-subgroup P and cyclic Sylow q-subgroups.

(2) P/Φ(P ) is a chief factor of G.
(3) If P is abelian, then P is elementary abelian.

Lemma 2.5. Let G be a Q8-free minimal non-2-nilpotent group. Then G has an elementary
abelian Sylow 2-subgroup.

Proof. By [10, Kapitel IV, Satz 5.4], G is minimal non-nilpotent. Lemma 2.4 (1) implies that G
has a normal Sylow 2-subgroup P .

Assume that P is not elementary abelian. Then P is non-abelian by Lemma 2.4 (3). Since G
is Q8-free, we have that P is Q8-free. By a result of Ward, namely by [2, Theorem 56.1], any
non-abelian Q8-free 2-group has a characteristic maximal subgroup. Since P is normal in G, it
follows that there is a maximal subgroup P1 of P which is normal in G. We have Φ(P ) ≤ P1, and
P/Φ(P ) is a chief factor of G by Lemma 2.4 (2). It follows that Φ(P ) = P1. This implies that P
is cyclic and hence abelian. On the other hand, we have observed above that P is non-abelian.
This is a contradiction.

So we have that P is elementary abelian, and the lemma follows. �

Lemma 2.6. ([6, Chapter 7, Theorem 4.5]) Let p be a prime number, and let G be a group. If
NG(H)/CG(H) is a p-group for any non-trivial p-subgroup H of G, then G is p-nilpotent.

Lemma 2.7. ([14, 7.2.2]) Let G be a non-trivial group, and let p be the smallest prime divisor of
|G|. Suppose that the Sylow p-subgroups of G are cyclic. Then G is p-nilpotent.

Lemma 2.8. ([21, Appendix C, Theorem 6.3]) Let p be a prime number, and let P be a normal
p-subgroup of a group G such that G/CG(P ) is a p-group. Then P ≤ Z∞(G).

To state the next two lemmas, we recall some definitions. Let F be a formation, let G be a group,
and let H/K be a chief factor of G. Then H/K is said to be F-central if H/KoG/CG(H/K) ∈ F.
Note that H/K is U-central if and only if H/K is cyclic. A normal subgroup N of G is said to
be F-central if any chief factor of G below N is F-central. The product of all F-central normal
subgroups of G is denoted by ZF(G).

Lemma 2.9. ([8, Lemma 3.3]) Let F be a solvably saturated formation containing U. Let G be a
group and E be a normal subgroup of G such that G/E ∈ F and E ≤ ZU(G). Then G ∈ F.

Lemma 2.10. ([20, Theorem B]) Let F be a formation. Let G be a group, and let E be a normal
subgroup of G such that F ∗(E) ≤ ZF(G). Then E ≤ ZF(G).

Lemma 2.11. ([14, 5.3.7]) Let p be a prime number, and let P be a p-group such that P has a
unique subgroup with order p. Then either P is cyclic, or p = 2 and P is a generalized quaternion
group.

Lemma 2.12. ([1, Lemma 2.1]) Let G be a group such that the trivial subgroup 1 is a 2-maximal
subgroup of G and such that G has no non-trivial 2-maximal subgroups. Then |G| = pq, where p
and q are prime numbers (not necessarily distinct).

Lemma 2.13. ([1, Lemma 2.3]) Let G be a group such that the trivial subgroup 1 is a 3-maximal
subgroup of G and such that G has no non-trivial 3-maximal subgroups. Then |G| = pqr, where
p, q and r are prime numbers (not necessarily distinct).

Lemma 2.14. ([6, Chapter 6, Theorem 1.5]) Let G be a solvable group, and let M be a maximal
subgroup of G. Then M has prime power index in G.

Lemma 2.15. ([14, 5.3.3]) Aut(Q8) is isomorphic to the symmetric group S4.

Lemma 2.16. ([14, 8.6.10]) Let G be a 2-closed group with order 24 such that the Sylow 2-subgroup
of G is isomorphic to Q8. Then either G ∼= Q8 × C3 or G ∼= SL2(3).
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3. Proof of Theorem 1.2

Proof of Theorem 1.2. Suppose that the theorem is false, and let G be a minimal counterexample.
Let L be a proper subgroup of G. Then L is Q8-free since G is Q8-free. Also, by hypothesis, any

subgroup of L with order 2 is an ICΦ-subgroup of G. Lemma 2.1 (1) implies that any subgroup of
L with order 2 is an ICΦ-subgroup of L. Consequently, L satisfies the hypotheses of the theorem,
and so L is 2-nilpotent by the minimality of G. It follows that G is a minimal non-2-nilpotent
group.

Let P ∈ Syl2(G). Then P 6= 1. By hypothesis, any subgroup of P with order 2 is an ICΦ-
subgroup of G. By Lemma 2.5, P is elementary abelian. In particular, P has no cyclic subgroup
with order 4. Applying Theorem 1.1 or [5, Theorem 3.1], we conclude that G is 2-nilpotent. This
contradiction completes the proof. �

4. Proofs of Theorems 1.4 and 1.5

Lemma 4.1. Let p be a prime number, let G be a group, and let P be a non-trivial normal p-
subgroup of G. Suppose that there is a subgroup D of P with 1 < |D| ≤ |P | such that any subgroup
of P with order |D| is an ICΦ-subgroup of G. If p = 2, |D| = 2 and P is not Q8-free, assume
moreover that any cyclic subgroup of P with order 4 is an ICΦ-subgroup of G. Then P ≤ Z∞(G).

Proof. Let q be a prime divisor of |G| with q 6= p, and let Q be a Sylow q-subgroup of G. Set
H := PQ. We have H ≤ G since P is normal in G. Note that P is a Sylow p-subgroup of H. By
Lemma 2.1 (1), any subgroup of P with order |D| is an ICΦ-subgroup of H. Also, if p = 2, |D| = 2
and P is not Q8-free, we have that any cyclic subgroup of P with order 4 is an ICΦ-subgroup
of H. Theorems 1.1 and 1.2 imply that H is p-nilpotent. This implies that H = P × Q, and
so we have Q ≤ CG(P ). Since q was arbitrarily chosen, it follows that Op(G) ≤ CG(P ). Hence,
G/CG(P ) is a p-group. Lemma 2.8 implies that P ≤ Z∞(G). �

Proof of Theorem 1.4. Suppose that the theorem is false, and let (G,E) be a counterexample such
that |G|+ |E| is minimal.

Set p := p1. We claim that E is p-nilpotent. This follows from Lemma 2.7 when P1 is cyclic.
Assume now that P1 is not cyclic. Then P1 has a subgroup D1 with 1 < |D1| ≤ |P1| such that
any subgroup of P1 with order |D1| is an ICΦ-subgroup of G. Also, if p = 2, |D1| = 2 and P1

is not Q8-free, then any cyclic subgroup of P1 with order 4 is an ICΦ-subgroup of G. Applying
Lemma 2.1 (1), Theorem 1.1 and Theorem 1.2, we conclude that E is p-nilpotent, as claimed.

Assume that Op′(E) 6= 1. From Lemma 2.1 (3), we see that (G/Op′(E), E/Op′(E)) satisfies the
hypotheses of the theorem. So we have G/Op′(E) ∈ F by the minimality of (G,E). Therefore,
(G,Op′(E)) also satisfies the hypotheses of the theorem. The minimality of (G,E) implies that
G ∈ F. This is a contradiction, and so we have Op′(E) = 1.

We show now that E ≤ ZU(G). Since E is p-nilpotent and since Op′(E) = 1, we have that
E = P1. If P1 is cyclic, then it follows that E = P1 ≤ ZU(G). If P1 is not cyclic, then the
hypotheses of the theorem and Lemma 4.1 imply that E = P1 ≤ Z∞(G) and thus E ≤ ZU(G).

Now Lemma 2.9 implies that G ∈ F. This contradiction completes the proof. �

Proof of Theorem 1.5. Arguing as at the beginning of the proof of Theorem 1.4, we see that F ∗(E)
is p1-nilpotent. With N1 := O(p1)′(F

∗(E)), we thus have F ∗(E)/N1
∼= P1.

Assume that t > 1. Then P2 ∈ Sylp2(N1), and again we can argue as at the beginning of
the proof of Theorem 1.4 to see that N1 is p2-nilpotent. With N2 := O(p2)′(N1), we thus have
N1/N2

∼= P2.
Repeating this argumentation, we see that G has a Sylow tower of supersolvable type, i.e.

there is a chain F ∗(E) = N0 > N1 > · · · > Nt = 1 of normal subgroups of F ∗(E) such that
Ni−1/Ni

∼= Pi for all 1 ≤ i ≤ t. It follows that F ∗(E) is solvable.
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As is well-known, F ∗(E) is generated by F (E) together with the components of E. Every
component of E is a non-solvable subgroup of E. Since F ∗(E) is solvable, it follows that E does
not possess any components. Consequently, we have F ∗(E) = F (E).

Let 1 ≤ i ≤ t. Since F (E) is nilpotent and Pi ∈ Sylpi(F (E)), we have that Pi is characteristic
in F (E). As F (E) E G, it follows that Pi E G. If Pi is cyclic, then Pi ≤ ZU(G). If Pi is not
cyclic, then the hypotheses of the theorem and Lemma 4.1 imply that Pi ≤ Z∞(G) and hence
Pi ≤ ZU(G). Since i was arbitrarily chosen, it follows that F (E) ≤ ZU(G).

Applying Lemmas 2.10 and 2.9, we conclude that G ∈ F. �

Proof of Theorem 1.6

Lemma 4.2. Let p be a prime number, and let P be a p-group such that any subgroup of P is an
ICΦ-subgroup of P . If p = 2, assume moreover that P is Q8-free. Then P is abelian.

Proof. Suppose that the lemma is false, and let P be a minimal counterexample. We will derive
a contradiction in three steps.

(1) P ′ is minimal normal in P , and there are no minimal normal subgroups of P other than P ′.
Clearly P 6= 1, and so P has a minimal normal subgroup, say N . We show that N = P ′.
Let N ≤ H ≤ P . By hypothesis, H is an ICΦ-subgroup of P . Lemma 2.1 (2) shows that H/N

is an ICΦ-subgroup of P/N . Since H was arbitrarily chosen, it follows that any subgroup of P/N
is an ICΦ-subgroup of P/N . Also, if p = 2, then P/N is Q8-free since P is Q8-free. Therefore,
P/N satisfies the hypotheses of the lemma, and so P/N is abelian by the minimality of P .

It follows that P ′ ≤ N . Noticing that P ′ 6= 1 since P is not abelian, we conclude that N = P ′,
as required.

(2) We have |P ′| = p, and there is no subgroup of P with order p other than P ′.
We have |P ′| = p since P ′ is minimal normal in P . Assume that there is a subgroup Q of P

with |Q| = p and Q 6= P ′. Set H := P ′Q ≤ P . Note that Φ(H) = 1.
By (1), Q is not normal in P . So we have Q 6≤ Z(P ) and hence H 6≤ Z(P ). Thus [H,P ] 6= 1.

Clearly [H,P ] E P and [H,P ] ≤ P ′. So we have [H,P ] = P ′ by (1).
By hypothesis, H is an ICΦ-subgroup of P . It follows that P ′ = H ∩ P ′ = H ∩ [H,P ] ≤

Φ(H) = 1. This is a contradiction, and so there is no subgroup of P with order p other than P ′.

(3) The final contradiction.
By (2), P has precisely one subgroup with order p. Moreover, P cannot be a generalized

quaternion group since P is Q8-free by hypothesis. Lemma 2.11 implies that P is cyclic and hence
abelian. This final contradiction completes the proof. �

Proof of Theorem 1.6. (1) ⇒ (2): Suppose that G is abelian. Then any section of G is abelian.
In particular, G is Q8-free. Also, if H is a subgroup of G, then H ∩ [H,G] = H ∩ 1 = 1 ≤ Φ(H),
so that H is an ICΦ-subgroup of G. Thus (2) holds.

(2) ⇒ (3): Clear.
(3)⇒ (1): Suppose that G is Q8-free and that any primary subgroup of G is an ICΦ-subgroup

of G. If G = 1, then there is nothing to show. Thus we assume that G 6= 1. Set t := |π(G)|,
and let p1, . . . , pt be the distinct prime divisors of |G|. For each 1 ≤ i ≤ t, let Pi be a Sylow
pi-subgroup of G.

Let 1 ≤ i ≤ t. Since any primary subgroup of G is an ICΦ-subgroup of G, we have that Pi is an
ICΦ-subgroup of G. Theorem 1.1 implies that G is pi-nilpotent. Since i was arbitrarily chosen,
we have that G is p-nilpotent for any prime divisor p of |G|. Consequently, G is nilpotent, and so
we have G = P1 × · · · × Pt.

Let 1 ≤ i ≤ t. Then any subgroup of Pi is an ICΦ-subgroup of G. Lemma 2.1 (1) implies that
any subgroup of Pi is an ICΦ-subgroup of Pi. Also, Pi is Q8-free since G is Q8-free. Lemma 4.2
implies that Pi is abelian.
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Consequently, G is a direct product of abelian groups, and so G is abelian as well. �

Proofs of Theorems 1.7, 1.8 and 1.9

Proof of Theorem 1.7. Suppose that the theorem is false, and let G be a minimal counterexample.
Clearly, G has a non-trivial maximal subgroup M . By hypothesis, M is an ICΦ-subgroup of

G. Lemma 2.2 implies that G is not simple.
Let N be a proper non-trivial normal subgroup of G, and let N ≤M ≤ G such that M/N is a

maximal subgroup of G/N . Then M is a maximal subgroup of G. So M is an ICΦ-subgroup of G.
Lemma 2.1 (2) implies that M/N is an ICΦ-subgroup of G/N . Since M was arbitrarily chosen,
it follows that any maximal subgroup of G/N is an ICΦ-subgroup of G/N . The minimality of G
implies that G/N is nilpotent.

It follows that (G/N)′ = G′N/N is a proper subgroup of G/N . This implies that G′ is a proper
subgroup of G. So there is a maximal subgroup M of G with G′ ≤ M . By hypothesis, M is an
ICΦ-subgroup of G. Lemma 2.3 implies that G is nilpotent. This is a contradiction to the choice
of G, and so the proof is complete. �

Proof of Theorem 1.8. Suppose that the theorem is false, and let G be a (not necessarily minimal)
counterexample.

Let M be a maximal subgroup of G. By hypothesis, every maximal subgroup of M is an ICΦ-
subgroup of G. Lemma 2.1 (1) implies that any maximal subgroup of M is an ICΦ-subgroup
of M . So M is nilpotent by Theorem 1.7. Since M was arbitrarily chosen, it follows that any
maximal subgroup of G is nilpotent. Consequently, G is minimal non-nilpotent.

By Lemma 2.4 (1), we have |G| = paqb with distinct prime numbers p, q and positive integers
a, b, where G has a normal Sylow p-subgroup P and cyclic Sylow q-subgroups.

We claim that b = 1. Assume, for sake of contradiction, that b ≥ 2. Clearly, G/P is cyclic with
order qb. Let P ≤ H < G such that H/P is the unique 2-maximal subgroup of G/P . Then H is a
2-maximal subgroup of G. By hypothesis, H is an ICΦ-subgroup of G, and we have G′ ≤ P ≤ H.
Lemma 2.3 implies that G is nilpotent. This contradiction shows that b = 1, as claimed.

It follows that any maximal subgroup of P is a 2-maximal subgroup of G. Consequently, any
maximal subgroup of P is an ICΦ-subgroup of G. Also, we have |P | > p, since otherwise G
would not possess a non-trivial 2-maximal subgroup. Applying Theorem 1.1, we conclude that G
is p-nilpotent. Therefore, G has a normal Sylow q-subgroup. Consequently, any Sylow subgroup
of G is normal in G. It follows that G is nilpotent. This contradiction completes the proof. �

We need the following lemma to prove Theorem 1.9.

Lemma 4.3. Let G be a group such that any 3-maximal subgroup of G is an ICΦ-subgroup of G.
Then G is solvable.

Proof. Suppose that the lemma is false, and let G be a minimal counterexample. We will derive
a contradiction in several steps.

(1) G has a non-trivial 2-maximal subgroup.
Clearly, G has a non-trivial maximal subgroup M . Any maximal subgroup of M is a 2-maximal

subgroup of G. Consequently, the set of 2-maximal subgroups of G is not empty. If 1 is the only
2-maximal subgroup of G, then G is solvable as a consequence of Lemma 2.12, a contradiction.
So G has a non-trivial 2-maximal subgroup.

(2) G has a non-trivial 3-maximal subgroup.
By (1), G has a non-trivial 2-maximal subgroup, say H. Any maximal subgroup of H is a

3-maximal subgroup of G. Consequently, the set of 3-maximal subgroups of G is not empty. If
1 is the only 3-maximal subgroup of G, then G is solvable as a consequence of Lemma 2.13, a
contradiction. So G has a non-trivial 3-maximal subgroup.
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(3) G is not simple.
By (2), G has a non-trivial 3-maximal subgroup. By hypothesis, any 3-maximal subgroup of G

is an ICΦ-subgroup of G. Consequently, G has a proper non-trivial ICΦ-subgroup. Lemma 2.2
implies that G is not simple.

(4) Any proper subgroup of G is solvable.
Let M be a maximal subgroup of G. It suffices to show that M is solvable. If M has no

non-trivial maximal subgroup, then M has prime order, and so M is solvable.
Suppose now that M has a non-trivial maximal subgroup. Then the set of 2-maximal subgroups

of M is not empty. If 1 is the only 2-maximal subgroup of M , then M is solvable as a consequence
of Lemma 2.12.

By hypothesis, any 2-maximal subgroup of M is an ICΦ-subgroup of G. Lemma 2.1 (1) implies
that any 2-maximal subgroup ofM is an ICΦ-subgroup ofM . So, ifM has a non-trivial 2-maximal
subgroup, then Theorem 1.8 implies that M is nilpotent and hence solvable.

(5) The final contradiction.
By (3), G has a proper non-trivial normal subgroup, say N . Let N ≤ H ≤ G such that H/N

is a 3-maximal subgroup of G/N . Then H is a 3-maximal subgroup of G. So, by hypothesis, H
is an ICΦ-subgroup of G. Lemma 2.1 (2) implies that H/N is an ICΦ-subgroup of G/N . Since
H was arbitrarily chosen, it follows that any 3-maximal subgroup of G/N is an ICΦ-subgroup of
G/N . The minimality of G implies that G/N is solvable. Also, N is solvable by (4). It follows
that G is solvable. This final contradiction completes the proof. �

Proof of Theorem 1.9. Let G be a non-nilpotent group such that G has a non-trivial 3-maximal
subgroup and such that any 3-maximal subgroup of G is an ICΦ-subgroup of G. Our task is to
show that G is isomorphic to SL2(3). We accomplish the proof step by step.

(1) If M is a non-nilpotent maximal subgroup of G, then there exist distinct prime numbers p
and q such that |M | = pq and such that |G : M | is a power of p.

Let M be a non-nilpotent maximal subgroup of G. Then M has a non-trivial maximal subgroup,
and so the set of 2-maximal subgroups of M is not empty. By hypothesis, any 2-maximal subgroup
of M is an ICΦ-subgroup of G. Lemma 2.1 (1) implies that any 2-maximal subgroup of M is
an ICΦ-subgroup of M . Since M is not nilpotent, it follows from Theorem 1.8 that the trivial
subgroup 1 is the only 2-maximal subgroup of M . Applying Lemma 2.12, we conclude that
|M | = pq, where p and q are prime numbers. We have p 6= q since M is not nilpotent.

By Lemma 4.3, G is solvable. So, by Lemma 2.14, the index |G : M | is a power of a prime
number r. Assume that r 6∈ {p, q}. As a solvable group, G has a Sylow system. Hence, there
exist P ∈ Sylp(G), Q ∈ Sylq(G) and R ∈ Sylr(G) such that P , Q and R are pairwise permutable.
Since |P | = p and |Q| = q, we have that R is maximal in RQ and that RQ is maximal in G.
Consequently, any maximal subgroup of R is a 3-maximal subgroup of G. Therefore, any maximal
subgroup of R is an ICΦ-subgroup of G. We have |R| > r, since otherwise G would not possess a
non-trivial 3-maximal subgroup. Applying Theorem 1.1, we conclude that G is r-nilpotent. This
implies that M = Or′(G) E G. Since |G : M | = |R| > r, it follows that M cannot be maximal in
G. This contradiction shows that r ∈ {p, q}, and without loss of generality, we may assume that
r = p.

(2) G is minimal non-nilpotent.
Assume that G is not minimal non-nilpotent. Then G has a non-nilpotent maximal subgroup

M . By (1), there exist distinct prime numbers p and q such that |M | = pq and such that |G : M |
is a power of p.

Let P be a Sylow p-subgroup of G, and let Q be a Sylow q-subgroup of G. Then |G : P | = q,
and so we have |P | ≥ p3, since otherwise G would not possess a non-trivial 3-maximal subgroup.
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Assume that Q E G. Then M/Q is a minimal subgroup of G/Q, and we have |G/Q| = |P | ≥ p3.
This is a contradiction to the maximality of M in G. Consequently, Q is not normal in G.

Any 2-maximal subgroup of P is a 3-maximal subgroup of G. So, by hypothesis, any 2-maximal
subgroup of P is an ICΦ-subgroup of G. If p is odd or if p = 2 and P 6∼= Q8, then Theorems 1.1
and 1.2 imply that G is p-nilpotent, which is impossible since Q is not normal in G. So we have
p = 2 and P ∼= Q8.

Now let N be a minimal normal subgroup of G. Since G is solvable, N is a primary subgroup
of G. Also N 6≤ Q since |Q| = q and Q is not normal in G. So we have N ≤ P .

Since P ∼= Q8, we have that Z(P ) is the only subgroup of P with order 2. Hence Z(P ) ≤ N , and
the minimal normality of N in G implies that N = Z(P ). It follows that N is the only subgroup
of G with order 2. Consequently, N ∈ Syl2(M), which easily implies that M is nilpotent. This is
a contradiction, and so (2) holds.

(3) G has a normal Sylow 2-subgroup P . We have P ∼= Q8 and |G : P | = 3.
In order to prove this, we use similar arguments as in the proof of Theorem 1.8.
By (2), G is minimal non-nilpotent. So, by Lemma 2.4 (1), we have |G| = paqb with distinct

prime numbers p, q and positive integers a, b, where G has a normal Sylow p-subgroup P and
cyclic Sylow q-subgroups.

Assume that b ≥ 3. Clearly, G/P is cyclic with order qb. Let P ≤ H < G such that H/P is
the unique 3-maximal subgroup of G/P . Then H is a 3-maximal subgroup of G. By hypothesis,
H is an ICΦ-subgroup of G, and we have G′ ≤ P ≤ H. Lemma 2.3 implies that G is nilpotent.
This contradiction shows that b ≤ 2.

Assume that b = 2. Then any maximal subgroup of P is 3-maximal in G, and so we have that
any maximal subgroup of P is an ICΦ-subgroup of G. We have |P | > p, since otherwise G would
not possess a non-trivial 3-maximal subgroup. Theorem 1.1 implies that G is p-nilpotent. But G
is also q-nilpotent, and so G is nilpotent. This contradiction shows that b = 1.

It follows that any 2-maximal subgroup of P is 3-maximal in G. Therefore, any 2-maximal
subgroup of P is an ICΦ-subgroup of G. We have |P | ≥ p3, since otherwise G would not possess
a non-trivial 3-maximal subgroup. If p is odd or if p = 2 and P 6∼= Q8, then Theorems 1.1 and
1.2 imply that G is p-nilpotent, which leads to a contradiction as above. So we have p = 2 and
P ∼= Q8.

If U is a non-trivial proper subgroup of P , then U is a cyclic 2-group, and this implies that
NG(U)/CG(U) is a 2-group. Since G is not 2-nilpotent, Lemma 2.6 implies that G/CG(P ) is not
a 2-group. Since G/CG(P ) is isomorphic to a subgroup of Aut(P ), and since Aut(P ) has order 24
by Lemma 2.15, we conclude that |G/CG(P )| is divisible 3. Therefore, |G| is divisible by 3. Since
P has prime index in G, it follows that |G : P | = 3.

(4) Conclusion.
Applying Lemma 2.16, we deduce from (3) that G ∼= SL2(3). So we have reached the desired

conclusion. �

References

[1] M. Asaad, Finite groups some of whose n-maximal subgroups are normal, Acta Math. Hungar. 54 (1989) 9–27.
[2] Y. Berkovich and Z. Janko, Groups of prime power order, Vol. 2 (de Gruyter, Berlin/New York, 2008).
[3] Z. Gao, S. Qiao, H. Shi and L. Miao, On p-CAP-subgroups of finite groups, Front. Math. China 15(5) (2020)

915–921.
[4] Z. Gao, J. Li and L. Miao, On CAPS∗

p
-subgroups of finite groups, Comm. Algebra 49(3) (2021) 1120–1127.

[5] Y. Gao and X. Li, The influence of ICΦ-subgroups on the structure of finite groups, Acta Math. Hungar.
163(1) (2021) 29–36.

[6] D. Gorenstein, Finite groups (Chelsea Publishing Co., New York, 1980).
[7] W. Guo, The theory of classes of groups (Science Press–Kluwer Academic Publishers, Beijing/New

York/Dordrecht/Boston/London, 2000).
[8] W. Guo and A. N. Skiba, On FΦ∗-hypercentral subgroups of finite groups, J. Algebra 372 (2012) 275–292.



10 JULIAN KASPCZYK

[9] B. Huppert, Normalteiler und maximale Untergruppen endlicher Gruppen, Math. Z. 60 (1954) 409–434.
[10] B. Huppert, Endliche Gruppen I (Springer, Berlin, 1967).
[11] Z. Janko, Finite groups with invariant fourth maximal subgroups, Math. Z. 82 (1963) 82–89.
[12] J. Kaspczyk, On p-nilpotence and ICΦ-subgroups of finite groups, Acta Math. Hungar. 165(2) (2021) 355–359.
[13] V. A. Kovaleva and A. N. Skiba, Finite soluble groups with all n-maximal subgroups F-subnormal, J. Group

Theory 17(2) (2014) 273–290.
[14] H. Kurzweil and B. Stellmacher, The theory of finite groups (Springer, New York, 2004).
[15] A. Mann, Finite groups whose n-maximal subgroups are subnormal, Trans. Amer. Math. Soc. 132 (1968)

395–409.
[16] V. S. Monakhov and V. N. Kniahina, Finite groups with P-subnormal subgroups, Ric. Mat. 62(2) (2013)

307–322.
[17] V. S. Monakhov, Groups with formation subnormal 2-maximal subgroups, Math. Notes 105 (2019) 251–257.
[18] V. S. Monakhov and M. M. Konovalova, On groups with formational subnormal strictly 2-maximal subgroups,

Ukrainian Math. J. 73(1) (2021) 120–130.
[19] G. Qian, Finite groups with S-permutable n-maximal subgroups, Comm. Algebra 43(12) (2015) 5183–5194.
[20] A. N. Skiba, On two questions of L. A. Shemetkov concerning hypercyclically embedded subgroups of finite

groups, J. Group Theory 13 (2010) 841–850.
[21] M. Weinstein, Between nilpotent and solvable (Polygonal Publishing House, Passaic, NJ, 1982).

Technische Universität Dresden, Institut für Algebra, 01069 Dresden, Germany
Email address: julian.kaspczyk@gmail.com


	1. Introduction
	Groups some of whose primary subgroups are IC-subgroups
	Groups all of whose maximal, 2-maximal or 3-maximal subgroups are IC-subgroups

	2. Preliminaries
	3. Proof of Theorem 1.2
	4. Proofs of Theorems 1.4 and 1.5
	Proof of Theorem 1.6
	Proofs of Theorems 1.7, 1.8 and 1.9
	References

