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A CHARACTERIZATION OF THE GROUPS PSL,(q) AND PSU,(q) BY
THEIR 2-FUSION SYSTEMS, ¢ ODD

JULIAN KASPCZYK

ABSTRACT. Let g be a nontrivial odd prime power, and let n > 2 be a natural number with
(n,q) # (2,3). We characterize the groups PSL,(q) and PSU,(q) by their 2-fusion systems. This
contributes to a programme of Aschbacher aiming at a simplified proof of the classification of
finite simple groups.

1. INTRODUCTION

The classification of finite simple groups (CFSG) is one of the greatest achievements in the
history of mathematics. Its proof required around 15,000 pages and spreads out over many
hundred articles in various journals. Many mathematicians from all over the world were involved
in the proof, whose final steps were published in 2004 by Aschbacher and Smith, after it was
prematurely announced as finished already in 1983. Because of its extreme length, a simplified
and shortened proof of the CFSG would be very valuable. There are three programmes working
towards this goal: the Gorenstein-Lyons-Solomon programme (see [27]), the Meierfrankenfeld-
Stellmacher-Stroth programme (see [43]) and Aschbacher’s programme.

The goal of Aschbacher’s programme is to obtain a new proof of the CFSG by using fusion
systems. The standard examples of fusion systems are the fusion categories of finite groups over
p-subgroups (p a prime). If G is a finite group and S is a p-subgroup of G for some prime p,
then the fusion category of G over S is defined to be the category Fg(G) given as follows: the
objects of Fg(G) are precisely the subgroups of S, the morphisms in Fg(G) are precisely the group
homomorphisms between subgroups of S induced by conjugation in G, and the composition of
morphisms in Fg(G) is the usual composition of group homomorphisms. Abstract fusion systems
are a generalization of this concept. A fusion system over a finite p-group S, where p is a prime, is a
category whose objects are the subgroups of S and whose morphisms behave as if they are induced
by conjugation inside a finite group containing S as a p-subgroup. For the precise definition, we
refer to [I1], Part I, Definition 2.1]. A fusion system is called saturated if it satisfies certain axioms
motivated by properties of fusion categories of finite groups over Sylow subgroups (see [11, Part
I, Definition 2.2]). If G is a finite group and S, S2 € Syl,(G) for some prime p, then Fg, (G) and
Fs,(G) are easily seen to be isomorphic (in the sense of [I2, p. 560]). Given a finite group G, a
prime p and a Sylow p-subgroup S of G, we refer to Fg(G) as the p-fusion system of G.

Originally considered by the representation theorist Puig, fusion systems have become an object
of active research in finite group theory, representation theory and algebraic topology. It has
always been a problem of great interest in the theory of fusion systems to translate group-theoretic
concepts into suitable concepts for fusion systems. For example, there is a notion of normalizers
and centralizers of p-subgroups in fusion systems, a notion of the center of a fusion system, a
notion of factor systems, a notion of normal subsystems of saturated fusion systems and a notion
of simple saturated fusion systems (see [11, Parts I and II}). Roughly speaking, Aschbacher’s
programme consists of the following two steps.
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1. Classify the simple saturated fusion systems on finite 2-groups. Use the original proof of
the CFSG as a “template”.
2. Use the first step to give a new and simplified proof of the CFSG.

There is the hope that several steps of the original proof of the CFSG become easier when
working with fusion systems. For example, in the original proof of the CFSG, the study of
centralizers of involutions plays an important role. The 2'-cores of the involution centralizers, i.e.
their largest normal odd order subgroups, cause serious difficulties and are obstructions to many
arguments. Such difficulties are not present in fusion systems since cores do not exist in fusion
systems. This is suggested by the well-known fact that the 2-fusion system of a finite group G
is isomorphic to the 2-fusion system of G/O(G), where O(G) denotes the 2'-core of G. For an
outline of and recent progress on Aschbacher’s programme, we refer to [§].

So far, Aschbacher’s programme has focused mainly on Step 1, while not much has been done
on Step 2. An important part of Step 2 is to identify finite simple groups from their 2-fusion
systems. The present paper contributes to Step 2 of Aschbacher’s programme by characterizing
the finite simple groups PSL,(q) and PSU,(q) in terms of their 2-fusion systems, where n > 2
and where ¢ is a nontrivial odd prime power with (n,q) # (2, 3).

In order to state our results, we introduce some notation and recall some definitions. Let
G be a finite group. A component of G is a quasisimple subnormal subgroup of G, and a 2-
component of G is a perfect subnormal subgroup L of G such that L/O(L) is quasisimple. The
natural homomorphism G — G/O(G) induces a one-to-one correspondence between the set of 2-
components of G and the set of components of G/O(G) (see [28, Proposition 4.7]). We use Z*(G)
to denote the full preimage of the center Z(G/O(G)) in G. In Step 2 of Aschbacher’s programme,
one may assume that a finite group G is a minimal counterexample to the CFSG. Such a group
G has the following property.

Whenever z € G is an involution and J is a 2-component of Cg(z), (CK)
then J/Z*(J) is a known finite simple group.

By a known finite simple group, we mean a finite simple group appearing in the statement of
the CFSG.

For each integer n # 0, we use ng to denote the 2-part of n, i.e. the largest power of 2 dividing
n. Given odd integers a, b with |a|, |b| > 1, we write a ~ b provided that (a — 1)2 = (b — 1)2 and
(a+1)2 = (b+ 1)a. If ¢ is a nontrivial prime power and if n is a positive integer, then we write
PSL}(q) for PSL,(q) and PSL;, (q) for PSU,(q). With this notation, we can now state our main
results.

Theorem A. Let g be a nontrivial odd prime power, and let n > 2 be a natural number. Let G
be a finite simple group. Suppose that G satisfies if n > 6. Then the 2-fusion system of G
is isomorphic to the 2-fusion system of PSLy,(q) if and only if one of the following holds:

(i) G = PSLE(q*) for some nontrivial odd prime power ¢* and some € € {+, —} with eq* ~ q;
(ii) n = 2, ’PSLQ((]”Q = 8, and G = A7,‘
(iii) n =3, (¢+1)2 =4, and G = M;.

Our second main result is an extension of Theorem [A] In order to state it, we briefly mention
some concepts from the local theory of fusion systems. Let F be a saturated fusion system on
a finite p-group S for some prime p, and let £ be a normal subsystem of F. In [7, Chapter 6],
Aschbacher introduced a subgroup Cg(€) of S, which plays the role of the centralizer of £ in
S. In [7, Chapter 9], he defined a normal subsystem F*(F) of F, called the generalized Fitting
subsystem of F, and proved that Cg(F*(F)) = Z(F*(F)), where the latter denotes the center of
F*(F).
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Theorem B. Let g be a nontrivial odd prime power, and let n > 2 be a natural number. If
n = 2, suppose that ¢ =1 or 7 mod 8. Let G be a finite simple group, and let S be a Sylow
2-subgroup of G. Suppose that Fs(G) has a normal subsystem € on a subgroup T of S such that
& is isomorphic to the 2-fusion system of PSLy(q) and such that Cs(E) = 1. Then Fg(G) is
isomorphic to the 2-fusion system of PSLy(q). In particular, if n <5 orif G satisfies , then
one of the properties (i)-(iii) from Theorem[A] holds.

Corollary C. Let g be a nontrivial odd prime power, and let n > 2 be a natural number. If n = 2,
suppose that g =1 or 7 mod 8. Let G be a finite simple group, and let S be a Sylow 2-subgroup
of G. Suppose that F*(Fs(Q)) is isomorphic to the 2-fusion system of PSLy(q). Then Fs(G) is
isomorphic to the 2-fusion system of PSLy(q). In particular, if n <5 or if G satisfies , then
one of the properties (i)-(iii) from Theorem[A] holds.

The paper is organized as follows. In Sections [2] and [3| we collect several results needed for
the proofs of our main results. Preliminary results on abstract finite groups and abstract fusion
systems are proved in Section [2] Section [3| presents some results on linear and unitary groups over
finite fields, mainly focussing on 2-local properties and on the automorphisms of these groups.

In Section 4, we will verify Theorem [A]for the case n < 5. Our proofs strongly depend on work
of Gorenstein and Walter [31] (for n = 2), on work of Alperin, Brauer and Gorenstein [2], [3] (for
n = 3) and on work of Mason [40], [41], [42] (for n = 4 and n = 5).

For n > 6, we will prove Theorem [A] by induction over n. In order to do so, we will consider a
finite group G realizing the 2-fusion system of PSL,(q), where ¢ is a nontrivial odd prime power
and where n > 6 is a natural number such that Theorem @ is true with m instead of n for any
natural number m with 6 < m < n. We will also assume that O(G) = 1 and that G satisfies (CK]).
To prove that Theorem [A] is satisfied for the natural number n, we will prove the existence of a
normal subgroup Gy of G such that Gy is isomorphic to a nontrivial quotient of SL% (¢*) for some
nontrivial odd prime power ¢* and some ¢ € {4, —} with e¢* ~ ¢. This will happen in Sections
BHSL

In Section [5, we will introduce some notation and prove some preliminary lemmas. Section
[6] describes the 2-components of the centralizers of involutions of G. In Section [7, we will use
signalizer functor methods to describe the components of the centralizers of certain involutions of
G. This will be used in Section [§| to construct the subgroup Gy of G. One of the main tools here
will be a version of the Curtis-Tits theorem [30), Chapter 13, Theorem 1.4] and a related theorem
of Phan reproved by Bennett and Shpectorov in [14].

Finally, in Section |§|, we will give a full proof of Theorem [A| (basically summarizing Sections
, and we will prove Theorem [B| and Corollary

Notation and Terminology. Our notation and terminology are fairly standard. The reader
is referred to [24], [28], [37] for unfamiliar definitions on groups and to [II], [19] for unfamiliar
definitions on fusion systems.

However, we shall now explain some particularly important notation and definitions (before
stating our main results, we already introduced some other important definitions).

Given a map a : A — B and an element or a subset X of A, we write X“ for the image
of X under . Also, if C C A and D C B such that C* C D, we use a|c,p to denote the
map C — D,c +— ¢® Given two maps a : A — B and 8 : B — C, we write o for the map
A— Cra s (a®)P.

Sometimes, we will interprete the symbols 4+ and — as the integers 1 and —1, respectively. For
example, if n is an integer and if ¢ is assumed to be an element of {+,—}, then n = ¢ mod 4
shall express that n =1 mod 4 if e = + and that n = —1 mod 4 if e = —.

Let G be a finite group. We write G# for the set of non-identity elements of G. Given an element
g of G and an element or a subset X of G, we write X9 for g7 Xg. The inner automorphism
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G — G,z — 29 is denoted by ¢,. For subgroups @ and H of G, we write Auty(Q) for the
subgroup of Aut(Q) consisting of all automorphisms of @ of the form ¢ |g g, where h € Ny(Q).

We write L(G) for the subgroup of G generated by the components of G and Lo/(G) for the
subgroup of G generated by the 2-components of G. We say that G is core-free if O(G) = 1. If G
is core-free and if L is a subnormal subgroup of G, then L is said to be a solvable 2-component of
G if L = SLy(3) or PSLy(3).

Let n be a natural number. Then we use Eon to denote an elementary abelian 2-group of order
2" and we say that n is the rank of Fon. The maximal rank of an elementary abelian 2-subgroup
of a finite 2-group S is said to be the rank of S. It is denoted by m/(.5).

Now let p be a prime, and let F be a fusion system on a finite p-group S. Then S is said to
be the Sylow group of F, and F is said to be nilpotent if F = Fg(S). Given a fusion system
F1 on a finite p-group Si, we say that F and F; are isomorphic if there is a group isomorphism
@ : S — 51 such that

Homz, (Q%, R?) = {(¢ '|g#.0)Y(¢lrre) | 1 € Homz(Q, R)}

for all @, R < S. In this case, we say that ¢ induces an isomorphism from F to Fi. Let Q be a
normal subgroup of S. If P and R are subgroups of S containing @) and if @ : P — R is a morphism
in F such that Q® = @, we write o/Q for the group homomorphism P/Q — R/Q induced by «.
The fusion system F/Q on S/Q with Homz,o(P/Q, R/Q) = {a/Q | a € Homz(P, R),Q* = Q}
for all P, R < S containing () is said to be the factor system of F modulo Q.

Suppose now that F is saturated. We write foc(F) for the focal subgroup of F and hnp(F) for
the hyperfocal subgroup of F. We say that F is quasisimple if F/Z(F) is simple and foc(F) = S.
A component of F is a subnormal quasisimple subsystem of F. Given a normal subsystem £ of S
and a subgroup R of S, we write ER for the product of £ and R, as defined in [7, Chapter 8].

2. PRELIMINARIES ON FINITE GROUPS AND FUSION SYSTEMS

In this section, we present some general results on finite groups and fusion systems.

2.1. Preliminaries on finite groups.

Lemma 2.1. ([37, 3.2.8]) Let G be a finite group, and let N be a normal p'-subgroup of G for
some prime p. Set G := G/N. If R is a p-subgroup of G, then we have Né(ﬁ) = N¢g(R) and

Caz(R) = Ca(R).

Corollary 2.2. Let G be a finite group, and let N be a normal p'-subgroup of G for some prime
p. Set G := G/N. If x € G has order p, then we have Cg(Z) = Cq(x).

Lemma 2.3. Let G be a finite group, and let Z be a cyclic central subgroup of G. Then each
Es-subgroup of G/Z has an involution which is the image of an involution of G.

Proof. Let Z < E < G such that E/Z = Eg. Let R be a Sylow 2-subgroup of E. Then
E = RZ. 1Tt suffices to show that R has an involution not lying in R N Z. Assume that any
involution of R is an element of R N Z. Then R has a unique involution since Z is cyclic.
We have R/(RNZ) =2 RZ/Z = E/Z = Eg, and so R is not cyclic. Applying [37, 5.3.7], we
conclude that R is generalized quaternion. In particular, Z(R) has order 2, and so we have
RN Z = Z(R). Since R is a generalized quaternion group, R/Z(R) is dihedral. In particular,
E/Z=R/(RNZ)=R/Z(R) % Es. This contradiction shows that R has an involution not lying
in RN Z, as required. O

The following proposition is well-known. We include a proof since we could not find a reference
in which it appears in the form given here.
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Proposition 2.4. Let G be a finite group, and let N be a normal subgroup of G with odd order.
If L is a 2-component of G, then LN/N is a 2-component of G/N. The map from the set of 2-
components of G to the set of 2-components of G/N sending each 2-component L of G to LN/N
is a bijection. Moreover, if N < K < G and K/N is a 2-component of G/N, then O% (K) is the
associated 2-component of G.

Proof. Let L be a 2-component of G. Hence, L is a perfect subnormal subgroup of G such
that L/O(L) is quasisimple. Clearly, LN/N is perfect and subnormal in G/N. Also, we have
(LN/N)/O(LN/N) = L/O(L), and so (LN/N)/O(LN/N) is quasisimple. It follows that LN/N
is a 2-component of G/N.

Let N < K < G such that K/N is a 2-component of G/N. In order to prove the second
statement of the proposition, it is enough to show that there is precisely one 2-component L of G
such that LN/N = K/N.

Since K /N is subnormal in G/N, we have that K is subnormal in G. Therefore, L := O (K) is
subnormal in G. Since O (K/N) = K/N, we have that K/N = LN/N. Clearly, 0¥ (L) = L. We
have L/O(L) =2 (LN/N)/O(LN/N) = (K/N)/O(K/N), and so L/O(L) is quasisimple. Applying
[28, Lemma 4.8], we conclude that L is a 2-component of G.

Now let Ly be a 2-component of G such that K/N = LoN/N. Then K = LoN. In particular,
Ly is a subgroup of K with odd index in K. Since Lg is subnormal in G, we have that Lg is
subnormal in K. Applying [13, Lemma 1.1.11], we conclude that Ly = 0% (Ly) = 0% (K) = L.
The proof of the second statement of the proposition is now complete. The third statement also
follows from the above arguments. O

Lemma 2.5. Let G be a finite group, and let n be a positive integer. Assume that Ly, ..., Ly are
the distinct 2-components of G, and assume that L; I G for all 1 <i <n. Let x be a 2-element of
G, and let L be a 2-component of Cq(x). Then L is a 2-component of Cr,(z) for some 1 < i <mn.

Proof. By [32 Corollary 3.2], we have La(Cg(z)) = Lo(Cp,,(@)(z)), and by [32, Lemma 2.18
(iii)], we have Lo (Cr,, (@ (2)) = [[j=; L2 (CL,(x)). Using basic properties of 2-components, as
presented in [28, Proposition 4.7], it is not hard to deduce that L is a 2-component of Cf,(z) for
some 1 <3 <n. OJ

The concepts introduced by the following two definitions will play a crucial role in the proof of
Theorem [A| (see [32] for a detailed study of these concepts).

Definition 2.6. Let G be a finite group, k be a positive integer and A be an elementary abelian
2-subgroup of G.

(i) For each nontrivial elementary abelian 2-subgroup EF of G, we define
Ag(E):= (] O(Cs(a)).
acE#

(ii) We say that G is k-balanced with respect to A if whenever E is a subgroup of A of rank k
and a is a non-trivial element of A, we have

Ag(E)NCq(a) < O(Cg(a)).

(iii)) We say that G is k-balanced if whenever E is an elementary abelian 2-subgroup of G of
rank k£ and a is an involution of G centralizing F, we have

Ag(E)NCq(a) < O(Cqla)).

(iv) By saying that G is balanced (respectively, balanced with respect to A), we mean that G is
1-balanced (respectively, 1-balanced with respect to A).
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Definition 2.7. Let G be a finite quasisimple group, and let k be a positive integer. Then G is
said to be locally k-balanced if whenever H is a subgroup of Aut(G) containing Inn(G), we have

Apg(E)=1
for any elementary abelian 2-subgroup E of H of rank k. We say that G is locally balanced if G
is locally 1-balanced.

We need the following proposition for the proof of Theorem It includes [32], Theorem 6.10] and
some additional statements, which should be also known. We include a proof for the convenience
of the reader.

Proposition 2.8. Let k be a positive integer, and let G be a finite group. For each elementary
abelian 2-subgroup A of G of rank at least k + 1, let
Wa:=(Ag(E) | E<Am(E)=k).
Then, for any elementary abelian 2-subgroup A of G of rank at least k + 1, the following hold:
(i) (Wa)9 =Wye forall g € G.
(ii) Suppose that A has rank at least k + 2 and that G is k-balanced with respect to A. Then

W4 has odd order. Moreover, if Ag is a subgroup of A of rank at least k+ 1, then we have
Wa =Wy, and Ng(Ag) < Ng(Wa).

In order to prove Proposition 2.8, we need the following theorem.

Theorem 2.9. ([32] Theorem 6.9]) Let k be a positive integer, G be a finite group and A be an
elementary abelian 2-subgroup of G of rank at least k + 2. Suppose that G is k-balanced with
respect to A. Then we obtain an A-signalizer functor on G (in the sense of [25), Definition 4.37])
by defining
Q(Cg(a)) = (Ag(E) N Cg(a) : E< A,m(E) = /{:>
for each a € A%,
We also need the following lemma.

Lemma 2.10. Let the notation be as in Theorem[2.9 Suppose that Ag is subgroup of A of rank
k+ 1. Then we have

0(G, A) == (0(Cg(a) | a € AT) = (Aq(E) | E < Ag,m(E) = k) = Wa,.

Proof. To prove this, we follow arguments found on pp. 40-41 of [40].

Since 6 is an A-signalizer functor on G, 0(Cg(a)) is A-invariant and in particular Ag-invariant
for each a € A#. Consequently, (G, A) is Ag-invariant. By the Solvable Signalizer Functor
Theorem [37, 11.3.2], 6 is complete (in the sense of [25, Definition 4.37]). In particular, (G, A)
has odd order. Applying [28, Proposition 11.23], we conclude that

0(G, A) = (Cy(a,a)(E) | E < Ag,m(E) = k).

Since 6 is complete, we have Cy(g, 4)(a) = 0(Cg(a)) for each a € A#. By definition of § and since

G is k-balanced with respect to A, we have 6(C¢(a)) < O(Cg(a)) for each a € A#. So, if E is a
subgroup of Ay of rank &, then

Coeay)(E) = [ Cocay(a)= () 0(Cala)) < (] O(Cala)) = Ac(E).
acE# acE# acE#

It follows that 0(G, A) < Wy,.

Let E < Ay with m(E) = k. Clearly, Ag(FE) is A-invariant. As a consequence of |28, Proposi-
tion 11.23], we have

AG(E) = (Ac(E) N Cala) | a € 4%,

By definition of 6, we have Ag(E)N Cg(a) < 6(Cg(a)) for each a € A¥. Tt follows that Ag(E) <
0(G, A). Consequently, W4, < 0(G, A). O
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Proof of Proposition[2.8 It is straightforward to verify (i).

To verify (ii), let A be an elementary abelian 2-subgroup of G of rank at least k + 2 such that
G is k-balanced with respect to A. Let 6 be the A-signalizer functor on G given by Theorem [2.9]
and let (G, A) := (0(Ca(a)) | a € A#). As a consequence of Lemmaﬂ we have (G, A) = Wy.
By the proof of Lemma [2.10] W4 = (G, A) has odd order.

Now let Ag be a subgroup of A of rank at least k+1. By Lemma Wa=0(G,A) < Wy, <
Wa, and so Wa = Wa,. Finally, if g € Ng(Ao), then (Wa)? = (Wa,)? = Wiag)s = Wa, = Wa,
and hence NGf(A()) < Ng(WA). ]

2.2. Preliminaries on fusion systems.

Lemma 2.11. Let p be a prime, G be a finite group, N be a normal subgroup of G and S €
Syl,(G). Then the canonical group isomorphism S/(S N N) — SN/N induces an isomorphism
from Fs(G)/(SNN) to Fsn/n(G/N).

Proof. Let ¢ denote the canonical group isomorphism S/(SNN) — SN/N. Let P and @ be two
subgroups of § such that SNN is contained in both P and Q. Set P := P/(SNN), Q := Q/(SNN),
P:= PN/N and Q := QN/N. Moreover, define F = Fs(G)/(SNN) and F := Fsn/n(G/N). It

is enough to show that

Homz(P, Q) = {(¢ "5 pallg ) | @ € Hom (P, 0)}.
Let o € Hom > (P Q). Then there exists g € G with P9 < Q and a = (cqlp@)/(SNN). By a
direct calculatlon (v s Is)oz(gp\é @) =cnNlpg € Hom (P, Q).

Now let @ € Homf(ﬁ, Q). Then there exists g € G with oY <Qand a= cgN|p7@. Clearly,
P9 < QN. Since SNN < @Q, we have that @ is a Sylow p-subgroup of QN. Since P9 is a p-subgroup
of QN, it follows that there exists an element n € N with P9" < Q. Set a := (¢gn|pQ)/(SNN).
Then a direct calculation shows that @ = (<,0*1|13715)04(cp\é’@). O

Corollary 2.12. ([L1} Part II, Exercise 2.1]) Let p be a prime, G be a finite group and S € Syl,(G).
Then the canonical group isomorphism S — S := SO, (G)/Oy (G) induces an isomorphism from

Fs5(G) to F5(G/Op(G)).

Lemma 2.13. Let K1 and Ky be two quasisimple finite groups. If the 2-fusion systems of K1 and
Ky are isomorphic, then the 2-fusion systems of K1/Z (K1) and Ko/Z(K2) are isomorphic.

Proof. Suppose that the 2-fusion systems of K; and Ky are isomorphic. Let S; be a Sylow 2-
subgroup of K; and F; := Fg,(K;) for i € {1,2}. As a consequence of [23, Corollary 1], we have
Z(F;) = SinZ*(K;) for i € {1,2}. Since K; and K>y are quasisimple, we have Z*(K;) = Z(K;)
and hence Z(F;) = S; N Z(K;) for i € {1,2}. Since F; = Fy, it follows that

.Fl/(Sl N Z(K1>) = fl/Z(]:l) = .FQ/Z(.FQ) = fg/(SQ N Z(Kg)).

Applying Lemma we may conclude that the 2-fusion system of K;/Z(Kj) is isomorphic to
the 2-fusion system of Ky/Z(Ks). O

Lemma 2.14. Let S be a finite 2-group, and let A and B be normal subgroups of S such that
S is the internal direct product of A and B. Suppose that A = Qg. Let F be a (not necessarily
saturated) fusion system on S. Assume that A and B are strongly F-closed and that there is an
automorphism o € Autz(S) such that a|a 4 has order 3, while | g = idp. Then each strongly
F-closed subgroup of S contains or centralizes A.

Proof. Let C be a strongly F-closed subgroup of S not containing A. Our task is to show that C
centralizes A.

Since A and C are strongly F-closed, we have that ANC' is strongly F-closed. In particular, o
normalizes AN C. It is easy to see that an automorphism of Qg with order 3 does not normalize
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any maximal subgroup of QJg. So, as a4 4 has order 3 and normalizes AN C, we have that ANC
has order 1 or 2.
By [37, 8.2.7], we have
[C, ()] = [[C, ()], ()]
We claim that [C, (a)] < ANC. Let c € C and B € (o). Let a € A and b € B such that ¢ = ab.
Since A and B commute and since § normalizes A and centralizes B, we have

e, B] = P =bvta WP = a7 dP e AN C.

Thus [C, (a)] < ANC, as asserted.
Since AN C has order 1 or 2, we have [ANC, («)] = 1. So it follows that

[C, ()] = [[C, ()], ()] < [ANC, ()] = 1.
Now we prove that C' centralizes A. Let ¢ € C and a € A, b € B with ¢ = ab. We have

clev € [C,(a)] = 1, whence ¢® = c. Thus ab = (ab)® = a®b and hence a = a®. As remarked
above, o does not normalize any maximal subgroup of A. So a cannot have order 4. By the
structure of A 2 Qg, it follows that a € Z(A). This implies that ¢ = ab centralizes A. O

We need the following definition in order to state the next proposition.

Definition 2.15. A nonabelian finite simple group G is said to be a Goldschmidt group provided
that one of the following holds:

(1) G has an abelian Sylow 2-subgroup.
(2) G is isomorphic to a finite simple group of Lie type in characteristic 2 of Lie rank 1.

Proposition 2.16. Let G be a finite group, and let S be a Sylow 2-subgroup of G. Assume that
for each 2-component L of G, the factor group L/Z*(L) is a known finite simple group. Let Lo
denote the set of 2-components L of G such that L/Z*(L) is not a Goldschmidt group. Then the
following hold:

(i) Let L be a 2-component of G. Then Fsnr(L) is a component of Fs(G) if and only if
L e Lo

(ii) The map from Lo to the set of components of Fs(G) sending each element L of £or to
Fsnr(L) is a bijection.

Proof. Let L be a 2-component of G. Set G := Fsnr(L). Since L is subnormal in G, we have
that G is subnormal in Fg(G) (see [L1, Part I, Proposition 6.2]). Therefore, G is a component of
Fs(G) if and only if G is quasisimple. We have foc(G) = SN L' = SN L by the focal subgroup
theorem [24, Chapter 7, Theorem 3.4], and so G is quasisimple if and only if G/Z(G) is simple. As
a consequence of [23, Corollary 1], we have Z(G) = SN Z*(L). Lemma implies that G/Z(G)
is isomorphic to the 2-fusion system of L/Z*(L). By |10, Theorem 5.6.18], the 2-fusion system of
L/Z*(L) is simple if and only if L € £o. So G is a component of Fg(G) if and only if L € £y,
and (i) holds.

(ii) follows from [9) (1.8)]. O
Lemma 2.17. Let G be a finite group with O(G) = 1, and let S be a Sylow 2-subgroup of G.
Let n > 1 be a natural number, and let Ly,...,L, be pairwise distinct subgroups of G such

that L; is either a component or a solvable 2-component of G for each 1 < i < n. Set Q :=
(SNLy)---(SNLy). Assume that Q < S and that Fs(G)/Q is nilpotent. Then, if Ly is a
component or a solvable 2-component of G, we have Ly = L; for some 1 < i <n.

Proof. Let L*(G) denote the subgroup of G generated by the components and the solvable 2-
components of G. By [37, 6.5.2] and [28, Proposition 13.5], L*(G) is the central product of the
subgroups of G which are components or solvable 2-components. Set L := Ly --- L, < L*(G).
Let G := Fgnrs(e)(L°(G)). Clearly, SNL = (SN Ly)---(SNLy) = Q. Lemma implies
that the 2-fusion system of L*(G)/L is isomorphic to G/Q. By hypothesis, Fg(G)/Q is nilpotent,
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and so G/Q is nilpotent. So the 2-fusion system of L*(G)/L is nilpotent. Applying [39, Theorem
1.4], we conclude that L*(G)/L is 2-nilpotent.

Now let Ly be a component or a solvable 2-component of G. If Ly < L, then we have Ly = L;
for some 1 < i < n since otherwise Ly < Z(L), which is impossible. So it suffices to show that
Lo < L.

If Lo is a component of G, then Ly/(LoN L) is both perfect and 2-nilpotent, which implies that
Ly < L, as needed.

Suppose now that Lg is a solvable 2-component of G. Assume that Ly £ L. Then LoN L <
Z(Ly). Since L is a solvable 2-component of G, it follows that Lo/(Lo N L) is isomorphic to
SLy(3) or PSLs(3). On the other hand, Lo/(Lo N L) is 2-nilpotent. This contradiction shows
that Ly < L, as required. O O

Corollary 2.18. Let G be a finite group, and let S be a Sylow 2-subgroup of G. Let n > 1
be a natural number, and let Lq,...,L, be pairwise distinct 2-components of G. Assume that
Q:=(SNLy)---(SNLy) is a normal subgroup of S and that Fs(G)/Q is nilpotent. Then, if Lo
is a 2-component of G, we have Ly = L; for some 1 < i < n.

Proposition 2.19. Let p be a prime, and let £ be a simple saturated fusion system on a finite
p-group T. Suppose that £ is tamely realized (in the sense of [4, Section 2.2]) by a nonabelian
known finite simple group K such that Out(K) is p-nilpotent. Assume moreover that G is a
nonabelian finite simple group containing a Sylow p-subgroup S with T' < S such that € I Fs(G)
and Cs(€) = 1. Then Fs(G) is tamely realized by a subgroup L of Aut(K) containing Inn(K)
such that the index of Inn(K) in L is coprime to p.

Proof. Set F := Fg(G). By a result of Bob Oliver, namely by [44, Corollary 2.4], F is tamely
realized by a subgroup L of Aut(K) containing Inn(K). We are going to show that the index of
Inn(K) in L is coprime to p.

Let Sy be a Sylow p-subgroup of L. Then F = Fg,(L). Clearly, OP(G) = G, and so hup(F) = S
by the hyperfocal subgroup theorem [19, Theorem 1.33]. It follows that hnp(Fs, (L)) = So.

By the hyperfocal subgroup theorem [19] Theorem 1.33], Sy = hup(Fs, (L)) = OP(L)NSy. Con-
sequently, OP(L) has p/-index in L, whence OF(L) = L. So we have OP(L/Inn(K)) = L/Inn(K).
On the other hand, L/Inn(K) is p-nilpotent since Out(K) is p-nilpotent. It follows that L/Inn(K)
is a p’-group, as claimed. O

3. AUXILIARY RESULTS ON LINEAR AND UNITARY GROUPS

In this section, we collect several results on linear and unitary groups needed for the proofs of
our main results. Some of the results stated here are known, while others seem to be new. For
the convenience of the reader, we also include proofs of known results when we could not find a
reference in which they appear in the form stated here.

3.1. Basic definitions. We begin with some basic definitions. Let ¢ be a nontrivial prime power,
and let n be a positive integer. The general linear group G Ly(q) is the group of all invertible n xn
matrices over Fy under matrix multiplication. The special linear group SLy(q) is the subgroup
of GL,(q) consisting of all n x n matrices over F, with determinant 1. The center of GL,(q)
consists of all scalar matrices I, with A € (F,)*. We have Z(SL,(q)) = SLy(¢q) N Z(GLy(q)).
Set PGLy(q) :== GLn(q)/Z(GLy(q)) and PSLy,(q) :== SLy(q)/Z(SLy(q)). By [35, Kapitel II, Satz
6.10] and [35], Kapitel II, Hauptsatz 6.13], SL,(q) is quasisimple if n > 2 and (n, q¢) # (2,2), (2, 3).

As in [35] Kapitel IT, Bemerkung 10.5 (b)], we consider the general unitary group GU,(q) as the
subgroup of G L, (q?) consisting of all (a;;) € GLy(q?) satisfying the condition ((a;;)?)(ai;)t = I,.
The special unitary group SUy(q) is the subgroup of GU,(q) consisting of all elements of GU,(q)
with determinant 1. By [35, Kapitel II, Hilfssatz 8.8], we have SLa(q) = SUz(q). The center of
GUy(q) consists of all scalar matrices AI,,, where A € (F2)* and A7"! = 1. We have Z(SUp,(q)) =
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SUn(q) N Z(GUn(q)). Set PGUn(q) := GUn(q)/Z(GUn(q)) and PSUn(q) := SUn(q)/Z(SUn(q))-
By [33] Theorems 11.22 and 11.26], SU,(q) is quasisimple if n > 2 and (n, q) # (2, 2), (2,3), (3,2).
We write (P)GL;}(¢) and (P)SL;(q) for (P)GL,(q) and (P)SLy(q), respectively. Also, we

write (P)GL,, (q) for (P)GUy,(q) and (P)SL,, (q) for PSU,(q).

3.2. Central extensions of PSL,(q) and PSU,(q). In the proofs of the following two lemmas,
we use the terminology of [5], Section 33].

Lemma 3.1. Let n > 3 be a natural number, and let ¢ be a nontrivial odd prime power. Let H
be a perfect central extension of PSLy(q). Then there is a subgroup Z < Z(SL,(q)) such that
H>=SL,(q)/Z.

Proof. By [29, pp. 312-313], the Schur multiplier of PSLy(q) is isomorphic to C;, 1) = Z(SLn(q)).
From [5, 33.6], we see that this is just another way to say that SL,(q) is the universal cov-
ering group of PSL,(q). Applying [5, 33.6] again, we conclude that H = SL,(q)/Z for some
Z < Z(SLn(q)). O

Lemma 3.2. Let n > 3 be a natural number, and let ¢ be a nontrivial odd prime power. Let H
be a perfect central extension of PSUy(q). Assume that (n,q) # (4,3) or that Z(H) is a 2-group.
Then there is a subgroup Z < Z(SUpn(q)) such that H = SU,(q)/Z.

Proof. Suppose that (n,q) # (4,3). By [29, pp. 312-313], the Schur multiplier of PSU,(q) is
isomorphic to C(, g+1) = Z(SUn(g)). As in the proof of Lemma we conclude that H &
SU(q)/Z for some Z < Z(SU,(q)).

Suppose now that (n,q) = (4,3) and that Z(H) is a 2-group. Let G := PSU,(3), and let G be
the universal covering group of G. Clearly, the Schur multiplier of G is isomorphic to Z ((NJ) By [29]
pp. 312-313], the Schur multiplier of G is isomorphic to Cy x C3 x C3. Thus Z(G) Cyx C3x C3.
Clearly, if Z < Z(G), then Z(G/Z) = Z(G)/Z. Let Q be the unique Sylow 3-subgroup of Z(G).
By [, 33.6], G is a central extension of SU4(3) and of H. Since SUy(3) has a center of order
4, we have SU4(3) = G/Q. Let Z < Z(G) with H = G/Z. As Z(H) is a 2-group, we have
Q < Z, whence H = G/Z =~ (G/Q)/(Z/Q) is isomorphic to a quotient of SUy(3) by a central
subgroup. O

3.3. Involutions. In this subsection, we collect several results on the involutions of the groups
(P)GL: (q) and (P)SL5(q), where ¢ is a nontrivial odd prime power, n > 2 and € € {+, —}.

Lemma 3.3. Let g be a nontrivial odd prime power, and let n > 2. Let T be an element of
GLy(q) such that T? = \I,, for some \ € Fy. Then one of the following holds:

(i) There is some p € Fy such that A = u?, and T is GLy(q)-conjugate to a diagonal matriz

with diagonal entries in {p, —p}.
(ii) n is even, A is a non-square element of Fy, and T' is G'Ln(q)-conjugate to the matrix

n/2
YA :

Moreover, we have Cgr,,(q)(T) = GL%(q2).

Proof. We identify the field F, with the subfield of F 2 consisting of all x € F . satisfying 27 = .
It is easy to note that any element of Fy is the square of an element of FZZ. Let € FZQ with
A= p.

If n € Fy, then basic linear algebra shows that 7' is diagonalizable over Fy, and it follows that
(i) holds.

Assume now that p ¢ Fy. Then A is a non-square element of Fy. Let V be an n-dimensional
vector space over F,, and let B be an ordered basis of V. Let ¢ be the element of GL(V') such
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that ¢ is represented by T with respect to B. Clearly, (1, ) is an F;-basis of Fj2. Using that
©? = Aidy, one can check that V becomes a vector space over [F2 by defining

(z +yp)v = zv + yo¥
for all z,y € F, and v € V. Let m be the dimension of V" over F, and let (v1,...,vy,) be an
[F2-basis of V. Then By := (v1,...,Vm, i1, . .., V) is an Fg-basis of V. In particular, n = 2m
is even. For 1 <i < m, we have v/ = pv; and (uv;)¥ = (vi)s"2 = \v;. So, with respect to By, ¢ is

represented by the matrix
L In/2
M= ( A ) |

It follows that T' and M are GL,(q)-conjugate.
Let v be an automorphism of V' as an Fg-vector space centralizing ¢. For z,y € Fy and v € V,
we have

(@ + yu)o)? = (20 +yo?)? = ¥ + o’ = (& + yp)o”,
whence 1 is F2-linear. Conversely, if ¢ is F2-linear, then

v;lw Y _ v;w

= ;= (wvs)

and hence ¥ = ¢1). It follows that the centralizer of ¢ in the general linear group of V' as an IF-
vector space is equal to the general linear group of V' as an Fg2-vector space. Thus Cqy, (g (T) =
GL%(qQ). So (ii) holds. O
Lemma 3.4. Let q be a nontrivial odd prime power, and let n > 2 be a natural number. Let
T € GUy(q).
(i) If T? = X, for some X\ € FZZ, then A is a square in F;z.
(i) If T? = p*I,, for some p € By with pitt =1, then T is GU,(q)-conjugate to a diagonal
matriz with diagonal entries in {p, —p}.
(iii) If T? = pI,, for some p € F, with pItt £ 1, then n is even, and we have Cau,(g)(T) =
GLn(q?).

Proof. Suppose that T2 = \I,, for some \ € ]FZQ. Since T? € GU,(q), we have that A1 = 1. It
is easy to see that any element z of F 22 with 29t = 1 is a square in F :;2. So (i) holds.
A proof of (ii) and (iii) can be extracted from [47, pp. 314-315]. O

Proposition 3.5. Let ¢ be a nontrivial odd prime power, and let n > 2 be a natural number. Let
p be an element of Fy of order (n,q —1). For each even natural number i with 2 <1i < n, let

g In—i
t; = < _Ii> S SLn(q)

and let t; be the image of t; in PSLy(q).

(i) Assume that n is odd. Then each involution of PSLy(q) is PSLy,(q)-conjugate to t; for
some even 2 <1 < n.

(ii) Assume that n is even and that there is some p € Fy with p = u?. For each odd natural
number i with 1 < i < n, the matrizc

5= pln—;
(2 _MIZ

lies in SLy(q). Let t; denote the image of t; in PSL,(q) for each odd 1 < i < n. Then
each involution of PSLy(q) is PSLy(q)-conjugate to t; for some (even or odd) 1 <i < 3.
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(iii) Assume that n is even and that p is a non-square element of Fy. Let

~ Lo
&= (pln/Q )

If w € SL,(q), then each involution of PSLy(q) is PSLy(q)-conjugate to to t; for some
even 2 <i < 5 or tow :=wZ(SLy(q)) € PSLy(q). If w & SLy(q), then each involution
of PSLy(q) is PSLy(q)-conjugate to t; for some even 2 <i < 3.

Proof. We follow arguments found in the proof of [46, Lemma 1.1].

Assume that n is odd. Then Z(SL,(q)) has odd order, and therefore, any involution of PSL,,(q)
is the image of an involution of SL,(q). As a consequence of Lemma3.3] each involution of SLy(q)
is SL,(q)-conjugate to t; for some even 2 < i < n. So (i) follows.

Assume now that n is even and that p = p? for some p € Fy. Note that Z(SLy,(q)) equals
(pI,). We claim that u" = —1. Since p?" = p" = 1, we have that u" = 1 or —1. If ™ = 1, then
u € (p), and so p is a square in (p), which is impossible. So we have " = —1. It follows that
t; € SLy(q) for each odd 1 < i < n. Now let T' € SL,(q) such that TZ(SL,(q)) € PSLy(q) is an
involution. Then we have T? = pI,, = p?‘I, for some 1 < ¢ < (n,q — 1). Using Lemma ﬁ we
conclude that 7' is SL,(q)-conjugate to a diagonal matrix D € SL,(q) with diagonal entries in
{ut, —u}. Let 1 < i < n such that —u’ occurs precisely i times as a diagonal entry of D. If i is
odd, we may assume that D = ugflszvi, and if 7 is even, we may assume that D = Mﬂ. In either
case, the image of D in PSL,(q) is t;. Hence, TZ(SLy(q)) is PSL,(q)-conjugate to t;. Noticing
that t; is PSL,(q)-conjugate to t,_;, we conclude that (ii) holds.

Now assume that n is even and that p is a non-square element of IF;. Again let 7" be an element
of SL,(q) such that TZ(SL,(q)) € PSL,(q) is an involution. We have T? = p’I, for some
1 <¢<(n,g—1). Assume that £ is even. Then Lemma implies that 7" or =7 is SL,(q)-
conjugate to péf; for some even 2 < i < §. It follows that TZ(SLy(q)) is PSLy(q)-conjugate
to t; for some even 2 < ¢ < 5. Assume now that £ is odd. As p is not a square in F,, but pt1
is a square in [Fy, p’ cannot be a square in F,. Using Lemma we may conclude that T is
G L, (q)-conjugate to the matrix

0 pf

1 0
M = € SL,(q).
0 p
10

It is rather easy to see that T and M are even conjugate in SL,(q). Let k := E_Tl. It is not hard

to show that the matrices , -
0 p 0 ptt
(1 0) and (pk 0

are SLo(q)-conjugate. So it follows that M and hence T is SL,,(q)-conjugate to p¥Ms, where
0 p
1 0
My = € SLn(q)
0 p
1 0
Consequently, the images of T" and My in PSL,(q) are conjugate. Furthermore, as det(Msy) =

det(w), we see that w € SL,(q). Also, w is SLy,(q)-conjugate to M, and so TZ(SLy(q)) is
PSL,(q)-conjugate to w. O
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Lemma 3.6. Let g be a nontrivial odd prime power and let n > 4 be an even natural number. Let
p be an element of ¥y of order (n,q —1). Suppose that p is a non-square element of Fy and that

I
o n/2
v (an/z >

lies in SLy(q). Denote the image of w in PSL,(q) by w. Set C := Cpgy, (q(w). Let P be a
Sylow 2-subgroup of C. Then the following hold:
(i) C has a unique 2-component J, and J is isomorphic to a nontrivial quotient of SL%(qz).
(ii) We have PN J < P, and the factor system Fp(C)/(P N J) is nilpotent.
(iii) If n > 6, then P has rank at least 4.

Proof. Set Co := Cgr,(q)(w)/Z(SLy(q)) < C. By a direct argument, Cp has index 2 in C. So
the 2-components of C' are precisely the 2-components of Cp. One may deduce from Lemma [3.3
that Cgp, (q)(w) has a normal subgroup J isomorphic to SL%(QQ) such that the corresponding
factor group is cyclic. Let J be the image of J in PSL,(q). Then J is isomorphic to a nontrivial
quotient of SL%(qQ). Moreover, J < Cy and Cy/J is cyclic. Therefore, J is the only 2-component
of Cp and hence the only 2-component of C. Thus (i) holds.

We have PN J < P because J < C. By Lemma the factor system Fp(C)/(PNJ) is
isomorphic to the 2-fusion system of C'/J. Since Cj has index 2 in C' and Cy/J is abelian, we
have that C'/J is 2-nilpotent. So C/J has a nilpotent 2-fusion system, and (ii) follows.

We now prove (iii). Assume that n > 6. Let u denote the image of

0 p
1 0
€ SLn(q)
0 p
10
in PSL,(q). Tt is easy to see that there exist a,b € F, with a?p — b%p? = 1. Let s be the image of
—bp ap
—a bp
€ SL,(q)

—bp ap
—a bp

in PSLy(q). By a direct calculation, s € Cpgr,,(q)(#). Another direct calculation shows that s is
an involution. Let z; denote the image of

<_I2 In_2> € SLa(q)

in PSL,(q), and let zo denote the image of

I
—IQ S SLn(q)
Inf4

in PSLy(q). Then one can easily verify that (s, u, 21, 22) < Cpgy,,(g)(u) is isomorphic to E1g. So
a Sylow 2-subgroup of Cpgr,,(g)(u) has rank at least 4. This is also true for P as w and u are
conjugate (see Proposition . O

Lemma 3.7. Letn > 2 be a natural number and lete € {+,—}. Also, let T € GLE(3)\Z(GL5(3))
such that T? € Z(GL(3)). Then Carz 3)(T) is core-free.
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Proof. By Lemmas and we either have Cgpe (3) (1) = GL;(3) x GL;,_;(3) for some 1 <i <
n, or n is even and Cgre (3)(1) = G Ly, 2(9). So we have that Cgpe (3)(T') is core-free. O

It is easy to deduce the following two corollaries from Lemma

Corollary 3.8. Letn > 2 be a natural number and lete € {+,—}. Then any involution centralizer
in SLE(3) is core-free.

Corollary 3.9. Letn > 2 be a natural number and let e € {+,—}. Then any involution centralizer
in PGLE(3) is core-free.

3.4. Sylow 2-subgroups and 2-fusion systems. In this subsection, we consider several prop-
erties of Sylow 2-subgroups and 2-fusion systems of linear and unitary groups.

Lemma 3.10. ([I8, p. 142]) Let q be a nontrivial odd prime power. Let k,s € N such that 2k s
the 2-part of ¢ — 1 and that 2° is the 2-part of ¢ + 1. Then:

(i) Assume that ¢ =1 mod 4. Then

A X 0 1
{( M> : A, u are 2-elements of Fq} : <(1 0>>

is a Sylow 2-subgroup of GLa(q). In particular, the Sylow 2-subgroups of GLa(q) are
isomorphic to the wreath product Cor ! Cs.
(ii) If ¢ = 3 mod 4, then the Sylow 2-subgroups of GLs(q) are semidihedral of order 2572

Lemma 3.11. ([I8, p. 143]) Let q be a nontrivial odd prime power. Let k,s € N such that 2F is
the 2-part of ¢ — 1 and that 2° is the 2-part of ¢+ 1. Then:

(i) If ¢ = 1 mod 4, then the Sylow 2-subgroups of GUs(q) are semidihedral of order 252,
(ii) If ¢ = 3 mod 4, then the Sylow 2-subgroups of GUs2(q) are isomorphic to the wreath product
Cos1Cy. Ife € IFZQ has order 2%, then a Sylow 2-subgroup of GUs(q) is concretely given by

vef( ) ameo (D)

Lemma 3.12. ([35, Kapitel II, Satz 8.10 a)]) If q is a nontrivial odd prime power, then a Sylow
2-subgroup of SLa(q) is generalized quaternion of order (¢* —1)a.

Lemma 3.13. ([35, Kapitel II, Satz 8.10 b)]) If q is a nontrivial odd prime power, then PSLa(q)
has dihedral Sylow 2-subgroups of order %(q2 —1)s.

Lemma 3.14. ([I8, Lemma 1]) Let q be a nontrivial odd prime power and let € € {+,—}. Let r
be a positive integer. Let W, be a Sylow 2-subgroup of GL5-(q). Then W, 1 Cq is isomorphic to a
Sylow 2-subgroup of GL5,.1(q). A Sylow 2-subgroup of GLS,.,(q) is concretely given by

W s) amemy (G 7))

Lemma 3.15. ([I8, Theorem 1]) Let ¢ be a nontrivial odd prime power and let n be a positive
integer. Let e € {+,—}. Let 0 < ry < .-+ < 1y such that n = 2™ + --- + 2", Let W; €
Sylo(GLS (q)) for all 1 < i < t. Then Wy x --- x Wy is isomorphic to a Sylow 2-subgroup of
GL:(q). A Sylow 2-subgroup of GLE (q) is concretely given by
Ay
A e W
Ay

Lemma 3.16. Let g be a prime power with ¢ = 3 mod 4. Let W be a Sylow 2-subgroup of
GLs(q), and let m € N such that |W| = 2"™. Then:
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(i) W is semidihedral. In particular, there are elements a,b € W with ord(a) = 2™~ and
ord(b) = 2 such that a® = a2™ *~1.
(ii) We have W N SLa(q) = (a?)(ab).
(iii) Let 1 < ¢ < 2™~ L If ¢ is odd, then a* has determinant —1, and a’b has determinant 1. If
0 is even, then a® has determinant 1, and atb has determinant —1.
(iv) The involutions of W are precisely the elements a®" ™ and a’b, where 2 < ¢ < 2m71 s
even.

Proof. By Lemma (ii), we have (i).

Let Wy := W N SLy(q). By Lemma Wy is generalized quaternion. Also, Wy is a maximal
subgroup of W since SLs(q) has index ¢ — 1 in GL2(q) and ¢ = 3 mod 4. By [24, Chapter
5, Theorem 4.3 (ii) (b)], we have ®(W) = (a?). So the maximal subgroups of W are precisely
the groups M; = (a), My = (a?)(b) and M3 := {(a?){ab). One can check that M; = Chu 1,
My =2 Dyt and M3 = Qqn—1. Consequently, Wy = (a?){ab), and (ii) holds.

(iii) follows from (ii) since any element of W \ Wy has determinant —1.

The proof of (iv) is an easy exercise. O

Lemma 3.17. Let q be a nontrivial odd prime power, n a positive integer and € € {+,—}. Let
0<r;<---<rsuchthatn =2"+---+2". Then there is a Sylow 2-subgroup W of G := GLE (q)
containing all diagonal matrices in G with 2-power order such that Cyw (W N SL;(q)) consists

precisely of the matrices
)\1[2T1

)\t Izrt

where A1, ..., A\ are 2-elements of Fy if G = GLy(q) and 2-elements of Fs with )\g+1 =1 (for
each 1 <1 <t)if G=GU,(q).

Proof. Using Lemmas and one can check that the centralizer of a Sylow 2-subgroup
of SL5(q) inside a Sylow 2-subgroup of GL5(q) is the Sylow 2-subgroup of Z(GL5(q)). Applying
Lemma[3.14]and arguing by induction, one can see that a similar statement holds for the centralizer
of a Sylow 2-subgroup of SL5,(q) inside a Sylow 2-subgroup of GL5.(q) for all r > 0. Now we
may apply Lemma to obtain a Sylow 2-subgroup of G with the desired properties. O

Lemma 3.18. Let q be a nontrivial odd prime power, n a positive integer and ¢ € {+,—}. Let
G := SL;(q), and let S be a Sylow 2-subgroup of G. Then we have Z(Fs(G)) = SN Z(G).

Proof. Let 0 <71 < --- <1 such that n = 2™ 4 ... + 2™ By Lemma [3.17, we may assume that
Z(S) consists precisely of the matrices

)\1]27‘1

A lor
where Ai,...,\; are 2-clements of [} with AN = 1if G = SL,(q) and 2-elements of I,

with )\;-Hl =1 (foreach 1 <i <t)and 2" --- A" = 1if G = SU,(q). Moreover, by Lemma
we may assume that S contains each diagonal matrix in G of 2-power order.

Let x be an element of Z(S) with diagonal blocks A\1lor1, ..., Atlore. One can easily see that
x is G-conjugate to any diagonal matrix in G that is obtained from z by permuting its diagonal
entries. It follows that, if A\; # A; for some 1 < i # j < t, then o ¢ Z(Fg(G)). This implies
Z(Fs(@)) =SNZ(G). O

Proposition 3.19. Let n be a positive integer. Let q,q* be nontrivial odd prime powers, and let
e,e* € {+,—}. Ifeq ~ £*q*, then the 2-fusion systems of SL%(q) and SLE (q¢*) are isomorphic.
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Proof. Assume that € # ¢*. From eq ~ €*¢*, it is easy to deduce that e¢ = ¢*¢* mod 8 and
(¢> — 1)2 = ((¢*)* — 1)2. So, in view of the remarks at the bottom of p. 11 of [I5], we may
apply [15, Proposition 3.3 (a)] to conclude that the 2-fusion system of SL5 (q) is isomorphic to
the 2-fusion system of SLE (q*).

Assume now that e = ¢*. Using Dirichlet’s theorem [21, Theorem 3.3.1], one can easily see that
there is an odd prime gy with eq ~ eq¢* ~ —eqp. By the preceding paragraph, both the 2-fusion
system of SL5 (q) and the 2-fusion system of SL(¢*) are isomorphic to the 2-fusion system of
SL¢(qo). Consequently, the 2-fusion systems of SLE(q) and SLE (¢*) are isomorphic. O

Proposition 3.20. Let n be a positive integer. Let q,q" be nontrivial odd prime powers, and let
g,6* € {+,—}. Ifeq ~ £*q*, then the 2-fusion systems of PSLE (q) and PSLE, (q*) are isomorphic.

Proof. Let S and S* be Sylow 2-subgroups of G := SL:(q) and G* := SLE (q*), respectively.
By Proposition F = Fs(G) and F* := Fg-(G*) are isomorphic. Therefore, F/Z(F) and
F*/Z(F*) are isomorphic. Lemma implies that /(S N Z(G)) and F*/(S* N Z(G*)) are
isomorphic. Now the proposition follows from Lemma [2.11 O

The following lemma shows together with [I0, Theorem 5.6.18] that the 2-fusion system of
PSL,(q) is simple whenever ¢ is odd and n > 3.

Lemma 3.21. Let q be a nontrivial odd prime power and n > 2 a natural number such that
(n,q) # (2,3). Moreover, let & be an element of {+,—}. Then PSL;(q) is a Goldschmidt group
if and only if n =2 and ¢ =3 or 5 mod 8.

Proof. Set G := PSL:(q).

Assume that n = 2. Then G = PSLs(q). By Lemma G has dihedral Sylow 2-subgroups
of order %(q —1)a(g + 1)2. So, if ¢ = 3 or 5 mod 8, then G has abelian Sylow 2-subgroups and
is thus a Goldschmidt group. If ¢ = 1 or 7 mod 8, then the Sylow 2-subgroups of GG are dihedral
of order at least 8 and hence nonabelian. Moreover, if ¢ = 1 or 7 mod 8, then [48, Theorem 37|
shows that G is not isomorphic to a finite simple group of Lie type in characteristic 2 of Lie rank
1. So GG is not a Goldschmidt group if ¢ =1 or 7 mod 8.

Assume now that n > 3. Again, we see from [48, Theorem 37| that there is no finite simple
group of Lie type in characteristic 2 of Lie rank 1 which is isomorphic to G. Also, G has a subgroup
isomorphic to SL5(q) = SLa(q), and therefore, the Sylow 2-subgroups of G are nonabelian.
Consequently, GG is not a Goldschmidt group. O

Lemma 3.22. Let n be a positive integer, q¢ a nontrivial odd prime power and € € {+,—}. Let E
be the subgroup of SLE (q) consisting of the diagonal matrices in SLE(q) with diagonal entries in
{1,—1}. Then |E| = 2"~1. Moreover, any elementary abelian 2-subgroup of SL(q) is conjugate
to a subgroup of E.

Proof. Tt is straightforward to check that |E| = 2"~1.

Let Ey be an elementary abelian 2-subgroup of SL¢(q). We show that Ej is conjugate to a
subgroup of E. Using Dirichlet’s theorem [21, Theorem 3.3.1], one can see that there is an odd
prime number ¢* with —¢ ~ ¢*, and Proposition shows that the 2-fusion systems of SU,(q)
and SL,(q*) are isomorphic. Therefore, it is enough to consider the case £ = +.

Since Ej is an elementary abelian 2-group, any two elements of Ey commute, and any element
of Ey is diagonalizable (see Lemma . It follows that Ejy is simultaneously diagonalizable, and
this implies that Ej is conjugate to a subgroup of E. O

Lemma 3.23. Let q be a nontrivial odd prime power, n > 3 a natural number and S a Sylow
2-subgroup of PSLy(q). Then Autpgy, )(S) = Inn(S).

Proof. Let R € Syly(SLy(q)) such that S is the image of R in PSL,(q). Let T be a Sylow
2-subgroup of GL,(q) with R < T. By [36, Theorem 1], we have Ngr,,()(R) = TCqr, (q)(T)-
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So we have that Autgy,, (4)(R) is a 2-group. Since the image of Ngp, () (R) in PSL,(q) equals
Npgr,(q)(S) (see [35, Kapitel I, Hilfssatz 7.7 c)]), it follows that Autpgy,(4)(S) is a 2-group, and
this implies Autpgy,,(g)(S) = Inn(S). O

3.5. k-connectivity. In this subsection, we prove some connectivity properties of the Sylow 2-
subgroups of SL,(q) and PSL,(q), where ¢ is a nontrivial odd prime power and n > 6. We will
work with the following definition (see [32] Section 8]):

Definition 3.24. Let S be a finite 2-group, and let k& be a positive integer. If A and B are
elementary abelian subgroups of S of rank at least k, then A and B are said to be k-connected if
there is a sequence
A:Al,AQ,...,An:B (nZl)
of elementary abelian subgroups A;, 1 < ¢ < n, of S with rank at least k such that
A CAjpror Ajp CA;

for all 1 < ¢ < mn—1. The group S is said to be k-connected if any two elementary abelian
subgroups of S of rank at least k are k-connected.

Lemma 3.25. (|32, Lemma 8.4]) Let S be a finite 2-group, and let k be a positive integer. If S
has a normal elementary abelian subgroup of rank at least 28~ + 1, then S is k-connected.

Lemma 3.26. Let q be a nontrivial odd prime power with ¢ = 1 mod 4, and let n > 6 be a natural
number. Then the Sylow 2-subgroups of PSLy(q) and those of SLy(q) are 3-connected.

Proof. Let Wy be the unique Sylow 2-subgroup of GL1(q), and let W; be the Sylow 2-subgroup
of GLy(q) given in Lemma (i). For each r > 2, let W, be the Sylow 2-subgroup of GLar(q)
obtained from W,._1 by the construction given in the last statement of Lemma Let 0 <7r <
.-+ < 1 such that n = 2™ 4 ... + 2™ and let W be the Sylow 2-subgroup of GL,(q) obtained
from W,,,...,W,, by using the last statement of Lemma [3.15]

Let R denote the subgroup of GL,(q) consisting of all diagonal matrices D € GL,(q), where
D? € Z(GLyn(q)) and any diagonal element of D is a 2-element of F}. It is easy to note that
RJIW.

Set Ry := RN SLy,(q). Then Q;(Ry), the subgroup of Ry generated by all involutions of Ry, is
elementary abelian of order 2"~ > 25 and Q1(Ro) < WNSL,(q). Also, RoZ(SLy(q))/Z(SLn(q))
is a normal elementary abelian subgroup of (W N SL,(q))Z(SLn(q))/Z(SLx(q)), and one can
easily check that the order of RyZ(SLy(q))/Z(SLn(q)) is at least 2°. Lemma implies that
W N SL,(q) and its image in PSL,(q) are 3-connected. O

Lemma [3.25| and the proof of Lemma [3.26| show that we also have the following:

Lemma 3.27. Let q be a nontrivial odd prime power with ¢ = 1 mod 4, and let n > 6 be a natural
number. Then the Sylow 2-subgroups of PSLy(q) and those of SLy(q) are 2-connected.

We now study the case ¢ =3 mod 4.

Lemma 3.28. Let q be a nontrivial odd prime power with ¢ = 3 mod 4, and let n > 6 be a natural
number. Then the Sylow 2-subgroups of PSLy(q) and those of SLy,(q) are 2-connected. If n > 10,
then we even have that the Sylow 2-subgroups of PSLy(q) and those of SL,(q) are 3-connected.

Proof. Let Wy denote the unique Sylow 2-subgroup of GL1(q), and let W; be a Sylow 2-subgroup
of GLa(q). By Lemma (ii), Wy is semidihedral. Let m € N with |W;| = 2™. Also, let
h,a € Wi such that ord(h) = 2™ !, ord(a) = 2 and h® = h2" "1, Set z := —I, = h2"°. For
each r > 2, let W, be the Sylow 2-subgroup of GLar(q) obtained from W, _; by the construction
given in the last statement of Lemma[3.14] Let 0 <7 < --- < ry such that n = 2" 4. 42" and
let W be the Sylow 2-subgroup of GL,(q) obtained from W, , ..., W,, by using the last statement
of Lemma B.T5
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Given a natural number ¢ > 1 and elements x1,...,xy € GLy(q), we write diag(z,...,xy) for
the block diagonal matrix

I

Ty
For each natural number r > 1, let A, denote the subgroup of GLar(q) consisting of the matrices
diag(z1, ..., 79—1), where either x; € (z) for all 1 <14 < 2"~! or z; is an element of (h) with order
Z}v’for all 1 <4 <21 By inductiogv over 1, one can see that A, < W, for all » > 1. Also, let

A, = Q1(A,) for all » > 1. Clearly, A, I W, for all r > 1.

We now consider two cases.

Case 1: n is even.

Let E be the subgroup of GL,(q) consisting of the matrices diag(zx,... ,:c%), where either
x; € () for all 1 <4 < 5 or x; is an element of (h) with order 4 for all 1 <7 < . Let E = O (E).
Since A,, < W,, for all 1 <14 < ¢, we have that E and E are normal subgroups of W. Lemma
(iii) shows that E < W N SLy,(q).

As E is clementary abelian of order 2%, Lemma implies that W N SL,(q) is 2-connected,
and even 3-connected if n > 10. Since EZ(SLy(q))/Z(SLn(q)) is a normal elementary abelian
subgroup of (W N SL,(¢))Z(SLn(q))/Z(SLyx(q)) with order 2%, Lemma also shows that a
Sylow 2-subgroup is 2-connected, and even 3-connected if n > 10.

Case 2: n is odd.
Now let E denote the subgroup of GL,(q) consisting of the matrices
L
z1

Tn—-1
2

where x; € (z) for all 1 <i < an Since ;1\;2 < W,, for all 2 <14 <t, we have that E is a normal

subgroup of W N SL,(q). Moreover, E is elementary abelian of order 9”7 . Lemma implies
that W N SL,(q) is 2-connected, and even 3-connected if n > 11. There is nothing else to show
since the Sylow 2-subgroups of PSL,(q) are isomorphic to those of SL,(q) (as n is odd). O

We show next that the groups SL,(q), where 6 < n < 9 and ¢ = 3 mod 4, and the groups
PSL,(q), where 7<n <9 and ¢ =3 mod 4, also have 3-connected Sylow 2-subgroups.

Lemma 3.29. Let q be a nontrivial odd prime power with ¢ = 3 mod 4. Then the Sylow 2-
subgroups of SLe(q) and those of SL7(q) are 3-connected.

Proof. Let Wi be a Sylow 2-subgroup of GLy(q), let Wy be the Sylow 2-subgroup of GL4(q)
obtained from W7 by the construction given in the last statement of Lemma and let W be
the Sylow 2-subgroup of GLg(q) obtained from Wi and W by using the last statement of Lemma

From Lemma we see that the Sylow 2-subgroups of SL;(g) are isomorphic to those of
GLg(q). So it is enough to show that W and W N SLg(q) are 3-connected. Given elements
x1, 2,3 € GLa(q), we write diag(x1, xe, x3) for the block diagonal matrix

L1
T2
T3
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Let A be the subgroup of W NS Lg(q) consisting of the matrices diag(x1, 2, x3), where x; € (—I2)
for 1 < ¢ < 3. Clearly, A = Eg. We prove the following:

(1) If E is an elementary abelian subgroup of W of rank at least 3, then E is 3-connected to
an elementary abelian subgroup of W N SLg(q) of rank at least 3.

(2) If E is an elementary abelian subgroup of W N SLg(q) of rank at least 3, then E is
3-connected to A in W N SLe(q).

By (1) and (2), any elementary abelian subgroup of W of rank at least 3 is 3-connected to A, and
so W is 3-connected. Similarly, (2) implies that W N SLg(q) is 3-connected.

Let Z := (diag(—12, I2, I2),diag(I2, —I2, —I2)). Since Z < Z(W), we have that any elementary
abelian subgroup of W of rank at least 3 is 3-connected to an Eg-subgroup of W containing
Z. Also, any elementary abelian subgroup of W N SLg(q) of rank at least 3 is 3-connected (in
WNSLe(q)) to an Eg-subgroup of W N SLg(q) containing Z. Therefore, we only need to consider
Eg-subgroups containing Z in order to prove (1) and (2).

So let E be an FEg-subgroup of W with Z < FE, and let s € E \ Z. Suppose that s =
diag(si, s2, s3), where s1,9,s3 € Wj. Then [E,A] = 1, and it is easy to deduce that E is 3-
connected to A, so that E satisfies (1). Also, if E < W N SLg(q), it is easy to deduce that E
satisfies (2).

Suppose now that

51
S = S92
53

for some s1,s9,s3 € Wi. Since s> = I, we have s9 = sgl. Let a be an involution of Wi with
a # —Iy. Set s* := diag(l2,a,a%?) and E* := (Z,s*) = Eg. Clearly, E* < W N SLg(q). It is
easy to check that [E, E*] = 1, which implies that E is 3-connected to E*. So E satisfies (1). If
E < W nSLg(q), then E is 3-connected to E* in W N SLg(q), and E* is 3-connected to A in
W N SLg(q) since [E*, A] = 1. Therefore, E satisfies (2) when E < W N SLg(q). O

Let ¢ be a nontrivial odd prime power with ¢ = 3 mod 4. A Sylow 2-subgroup of PSL7(q)
is isomorphic to a Sylow 2-subgroup of SL7(q). So, by Lemma the Sylow 2-subgroups of
PSL7(q) are 3-connected.

We need the following lemma in order to prove that the Sylow 2-subgroups of SL,(¢q) and
PSL,(q) are 3-connected when n € {8,9}.

Lemma 3.30. Let q be a nontrivial odd prime power with ¢ = 3 mod 4, and let V' be a Sylow
2-subgroup of GL4(q). Let u € V with w? = Iy or w2 = —Iy. Then there is an involution
v eV \ (u,—1y) which commutes with u.

Proof. Fix a Sylow 2-subgroup Wi of GL2(q), and let Wy be the Sylow 2-subgroup of GL4(q)
obtained from Wi by the construction given in the last statement of Lemma By Sylow’s
Theorem, we may assume that V = Ws. Let a be an involution of W; with a # —I».
First, we consider the case that
(")
u =
Yy

with elements z,y € Wy. If ¢ & (—13) or y & (—I3), then

—1I
() ew

is an involution commuting with v and not lying in (u, —I4). If x,y € (—I5), then we may choose

()
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Assume now that

with elements z,y € Wj. Let

As a is an involution of W7, we have that v is an involution of Wj. By a direct calculation (using
that xy € (—I2)), v has the desired properties. O

Lemma 3.31. Let q be a nontrivial odd prime power with ¢ = 3 mod 4. Then the Sylow 2-
subgroups of SLg(q) and those of SLg(q) are 3-connected.

Proof. Fix a Sylow 2-subgroup Wj of GL2(q), let W5 be the Sylow 2-subgroup of G L4(q) obtained
from W) by the construction given in the last statement of Lemma [3.14] and let W be the Sylow
2-subgroup of G Lg(q) obtained from W5 by the construction given in the last statement of Lemma
Set S := W N SLs(q).

From Lemma we see that the Sylow 2-subgroups of SLg(q) are isomorphic to those of
GLg(q). So it is enough to show that W and S are 3-connected.

Given a natural number ¢ > 1 and z1,...,xp of GL2(q) UGL4(q), we write diag(x1,...,xy) for
the block diagonal matrix

T

Ly
Set
A = {diag(z1,x2,23,24) | ®; € (—Io) V1 <i<4} < S
and
Z = (—1Ig) <S.

Clearly, A = Fy4. Since Z < Z(W), we have that any elementary abelian subgroup of W of
rank at least 3 is 3-connected to an Eg-subgroup of W containing Z. Similarly, any elementary
abelian subgroup of S of rank at least 3 is 3-connected to an FEg-subgroup of S containing Z. So
it suffices to prove that any Eg-subgroup F of W with Z < FE is 3-connected to A, where F is
even 3-connected in S to A if £ < S. Thus let E be an Eg-subgroup of W containing Z, and let
x,y € E with E = (Z,z,vy).

We consider a number of cases. Below, a will always denote an involution of Wi with a # —Is.

Case 1: x = diag(—1I4, I4) and y = diag(by, b2) for some by, b € Wh.

We determine an involution y; € Cw (F) \ (Z, x) such that (Z,x,y1) = Fg is 3-connected to A.
In the case that £ < S, we determine y; such that y; € S and such that (Z, x, y;) is 3-connected to
Ain S. The existence of such an involution y; easily implies that E is 3-connected to A, and even
3-connected to A in S if £ < S. The involution g; is given by the following table in dependence
of y. In each row, rq, 19,73, 74 are assumed to be elements of W7 such that y is equal to the matrix
given in the column “y” and such that the conditions in the column “Conditions” (if any) are
satisfied. The column “y;” gives the involution y; with the desired properties. For each row, one

can verify the stated properties of y; by a direct calculation or by using the previous rows.
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Case Y Conditions Y1
1
T2
1.1 ry Y
T4
(&) . -
1.2 2 <7"1,7’2> ﬁ <—I2> T9
T3 I
T4 4
™ . a
1.3 2 r1,me < (—1) a
T3 I
T4 4
r " Iy
1.4 2 (r3,ra) £ (—12) r3
T3 T
T4
r " Iy
1.5 2 73,74 < (—12) a
T3 a
T4
1
) "
1.6 )
T3 I
T4 4

Case 2: x = diag(ay,a2) and y = diag(by, ba) for some a1, az,by,bs € Ws.

Set z1 := diag(—1I4,14). Since E = (Z,z,y) = Eg, the elements x and y cannot be both
contained in (Z,z1). Without loss of generality, we may assume that y € (Z,z1). Then E; :=
(Z,x1,y) = Eg. The group Ej is 3-connected to A by Case 1, and it is 3-connected to E since E
and F commute. Hence, F is 3-connected to A. Clearly, if £ < S, then F is even 3-connected in
S to A.

Case 3: There are a1, as,b1,by € Wy with

{wvy}Z{(al ag)’<bz bl>}'

Without loss of generality, we assume that

(a1 _ b1
ZL’—< a2) andy-(b2 >

Since x and y are commuting involutions, we have by = b, Land as = 1. By Lemma m there
is an involution a3 € Wy \ (a1, —1I) which commutes with a;. Set

_ (@
yl T a’/‘ibl .

It is easy to see that y; € S, and y; is an involution since a; is an involution of W5. We have
[x,y1] = 1 since a1 commutes with a; and a1”" commutes with a1® = as. A direct calculation
using that by = b,' shows that we also have [y,y1] = 1. Thus E = (Z,z,y) commutes with
Ey :=(Z,z,y1). Since a1 ¢ (a1, —14), we have y; &€ (Z,x) and hence E; = FEg. Applying Case 2,
it follows that E is 3-connected to A (and even 3-connected in S to A when E < S5).
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Case 4: There are ay,as, b1, by € Wy with

This case can be reduced to Case 3 since F = (Z,x,y) = (Z, z, xy). O

Let ¢ be a nontrivial odd prime power with ¢ = 3 mod 4. A Sylow 2-subgroup of PSLg(q)
is isomorphic to a Sylow 2-subgroup of SLg(q). So, by Lemma the Sylow 2-subgroups of
PSLy(q) are 3-connected.

Lemma 3.32. Let ¢ be a nontrivial odd prime power with ¢ = 3 mod 4. Then the Sylow 2-
subgroups of PSLg(q) are 3-connected.

Proof. Let W1 be a Sylow 2-subgroup of GLa(q). Let Wy be the Sylow 2-subgroup of GL4(q)
obtained from Wj by the construction given in the last statement of Lemma [3.14] and let W3 be
the Sylow 2-subgroup of GLg(gq) obtained from Wy by the construction given in the last statement
of Lemma Set S := W3 N SLg(q). For each subgroup or element X of SLg(q), let X denote
the image of X in PSLg(q). We prove that S is 3-connected.

Given a natural number ¢ > 1 and 1, ..., 2y of GL2(q) UGL4(q), we write diag(x1,...,xy) for
the block diagonal matrix

I

Ze
Set
A= {diag(w1, 2,23, 74) | 2 € (—12) V1< i <4} < S,

We have A =2 Fg.
Set

Z = (diag(—l4, I4)> .

We have Z < Z(S). Using this, it is easy to note that any elementary abelian subgroup of S of
rank at least 3 is 3-connected to an Eg-subgroup of S containing Z. Hence, it suffices to prove
that any Fg-subgroup of S containing Z is 3-connected to A.

Let x,y € S and B := (Z,Z,y). Suppose that B = Eg. Considering a number of cases, we will
prove that B is 3-connected to A. Below, a will always denote an involution of Wy with a # —1Is.

Case 1: x = diag(ry,re,73,74) and y = diag(my, ma) for some r1,r2,r3,74 € W1 and my,mg €
Wa.

We consider a number of subcases. These subcases are given by the rows of the table below. In
each row, we assume that si, so, s3, s4 are elements of Wj such that y is equal to the matrix given
in the column “y”. We also assume that the conditions in the column “Conditions” (if any) are
satisfied. The column “y;,” gives an element of S such that g1 is an involution in Cg(E) \ (Z,T)
and such that (Z,7,77) is 3-connected to A. The existence of such an element y; easily implies
that B is 3-connected to A.
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Case Y Conditions Y1
S1
59
1.1 54 Y
S4
S1 I4
12 | [*? rd A I
S3 T
Sq 2
S1 a
1.3 52 r e A asgl
S3 I
S4 4
S1 IQ
S9 —[2
1.4 59 g A I
S4 —Ig
s a
S9 ' a551
1.5 re A
S3 a
84 as4_1

The subcase that y has the form

can be easily reduced to Cases 1.2 and 1.3.
Case 2: There are r1,712,73,74 € W1 and mq, mg € Wy with
(|

T2 (ml >
T = and y = .
T3 ma2

T4
Case 2.1: There are sy, $2, 83,84 € W1 with

S S
y = 2 or y = 2
53 53

S4 S4
Noticing that (Z,7,9) = (Z,Z,Z¥y), this case can be reduced to Case 1.

Case 2.2: There are s1, S9, S3, 84 € W1 with
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Since B = FEg, we have ex¥ = x, where € € {4+, —}. By a direct calculation, we have

-1
§1 T152

-1
Y — So T2S51
84
3
"3

As x = ex¥, we have r| = Esflrlsg, ro = ss§1r281, r3 =ery* and ry = ery®. Note that es}' = sy
and esy? = 1.

We now consider a number of subsubcases. These subsubcases are given by the rows of the
table below. The columns “Condition 1”7 and “Condition 2” describe the subsubcase under consid-
eration. The column “y;” gives an element y; € S such that g7 is an involution in Cg(E) \ (Z, T)
and such that (Z,Z, 1) is 3-connected to A. In each subsubcase, one can see from the above
calculations and from the previous cases that y; indeed has the stated properties. The existence
of such an element y; easily implies that B is 3-connected to A in all subsubcases.

Case Condition 1 Condition 2 Y1
£S1
52
221 | a?=Iy=y* |(r3,m) £ (~Do) ers
T4
T1
222 | 22=Igy=y* |(rar)<(-DL)| |" ca
a®’
€S
2 _ 1 _ .2 52
223 | 22=-Ig=y ery
T4
Iy
224 | 2% =Is,y* = —Is | (r3,ra) £ (—I2) ers
T4
Iy
225 |2* = Ig,y> = —Is | (r3,ra) < (= Do) a
€a®3

The case that 22 = —Ig and 32 = Ig can be easily reduced to Cases 2.2.4 and 2.2.5.

Case 2.3: There are s1, So, 83, 84 € W1 with

Since (Z,%,%) = (Z,%,T}), this case can be reduced to Case 2.2.

Case 3: There are r1,r2,73,74 € W1 and my, mo € Wy with

x = "2 and y = <m1 > .
T3 ma

This case can be reduced to Case 2.
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Case 4: There are r1,712,73,74 € W1 and my, mg € Wo with

™

z=|" andy—(m1 )
T3 ma

T4

In view of Cases 1-3, we may assume that

51

52
y= s
3

S4

for some sy, 59, 53,54 € Wi. Since (Z,%,9) = (Z,Z,%}), we can now reduce the given case to Case
1.

Case 5: There are a1, as, b1, by € Wy with

{ﬂzy}Z{(al a2>’(bz bl>}‘

Without loss of generality, we assume that

(a1 . bl
ZL'—< a2) andy—<b2 )

We have 2% € (—1I3) since B = (Z,%, ) = Es, and hence a;% € (—14). So, by Lemmam there
is an involution a3 € Wy \ (a1, —I4) which commutes with a;. Set

_ (@
yl T d"lbl .

Clearly, 97 is an involution of S. As [z,y] € (—Ig), we have a;** € {as, —as}. Since a; and a;
commute, it follows that @;”" and ap commute. So we have [z, y1] = 1 and hence [z, 77] = 1. Using
that y2 € (—Ig), one can easily verify that [y,71] = 1 and hence [7,71] = 1. As a1 & (a1, —14), we
have y1 & (Z, 7).

Now (Z,Z, 1) is an Eg-subgroup of S which commutes with B and which is 3-connected to A
by Cases 1-4. Thus B is 3-connected to A.

Case 6: There are a1, as,b1,by € Wy with

_ ap _ b1
x(a2 ) andy<b2 )

Noticing that (Z,Z,%) = (Z,Z, Zy), we can reduce this case to Case 5. O

We summarize the above lemmas in the following corollary.

Corollary 3.33. Let q be a nontrivial odd prime power and n > 6. Then the following hold:

(i) The Sylow 2-subgroups of SLy(q) and those of PSLy(q) are 2-connected.
(i1) The Sylow 2-subgroups of SLy(q) are 3-connected.
(i) If ¢ =1 mod 4 or n > 7, then the Sylow 2-subgroups of PSL,(q) are 3-connected.

Unfortunately, the Sylow 2-subgroups of PSLg(q) are not 3-connected when ¢ =3 mod 4 (this
is not terribly difficult to observe).
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Corollary 3.34. Let q be a nontrivial odd prime power and n > 6. Let G = SLy,(q), or G =
PSL,(q) and n > 7 if ¢ = 3 mod 4. For any Sylow 2-subgroup S of G and any elementary
abelian subgroup A of S with m(A) < 3, there is some elementary abelian subgroup B of S with
A < B and m(B) = 4.

Proof. By Corollary S is 2-connected and 3-connected. Applying [32, Lemma 8.7], the claim
follows. O

3.6. Generation. Next we discuss some generational properties of (P)SL,(q) and (P)SU,(q),
where n > 3 and ¢ is a nontrivial odd prime power. We need the following definition (see [32,
Section 8§]).

Definition 3.35. Let G be a finite group, let S be a Sylow 2-subgroup of G, and let k& be a
positive integer. We say that G is k-generated if
G=Tgi(G):=(Na(T) | T <Sm(T) > k).
The following two lemmas will later prove to be useful.

Lemma 3.36. (see [0]) Let q be a nontrivial odd prime power. Then the groups SLs(q), PSLs(q),
SUs(q) and PSUs(q) are 2-generated.

Lemma 3.37. Let q be a nontrivial odd prime power, and let n > 4 be a natural number. More-
over, let e € {+,—} and Z < Z(SL;(q)). Assume that one of the following holds:
(i) n > 5,
(ii) ¢ =€ mod 8,
(i) Z = 1.
Then SLS(q)/Z is 3-generated.
We need the following lemma in order to prove Lemma, [3.37]

Lemma 3.38. (see [45], [14]) Let ¢ > 2 be a prime power, and let n > 3 be a natural number.

Let € € {+,—}. Define
U, = {(A In2> : Ae SLg(q)}

Uy = {(IH A) . Ae SLg(q)}.

Moreover, for each 2 <i<n—2, let

Ii 4
Ui = A : Ae SL5(q)
In—i—l

and

Then the following hold:
(i) We have SL:(q) =(U; : 1<i<n-—1).
(ii) For each 1 <1 <n—2, there is a monomial matriz m; in SL5(q) with U™ = Us4q.

Proof of Lemma[3.37 Let g be a nontrivial odd prime power, and let n > 4 be a natural number.
Moreover, let ¢ € {+,—} and Z < Z(SL:(q)). Suppose that one of the conditions n > 5,
g= e mod 8 or Z =1 is satisfied. We have to show that SL5 (q)/Z is 3-generated.

Let Uy,...,U,—1 denote the SL5(g)-subgroups of SL:(q) corresponding to the 2 x 2 blocks
along the main diagonal (as in Lemma . Let E be the subgroup of SL5(q) consisting of the
diagonal matrices in SL5 (q) with diagonal entries in {—1,1}.

Assume that n > 5. Then one can easily see that, for each ¢ € {1,...,n — 1}, there is an
Eg-subgroup E; of E with E; N Z(SL5(¢)) = 1 and [E;,U;] = 1. Hence, U;Z/Z centralizes
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E;Z]Z = Eg for each i € {1,...,n—1}. Now, if S is a Sylow 2-subgroup of SL: (q)/Z containing
EZ|Z, we have U; Z|Z < T53(SL5(q)/Z) for each i € {1,...,n— 1}, and Lemma [3.38] (i) implies
that SL (q)/Z is 3-generated.
We now consider the case n = 4. By hypothesis, Z =1 or ¢ =& mod 8. Let
a |l i
U:= 0 . Ae SL5(q)
0 0]1

If Z=1,set y:=—1I4. If ¢ = mod 8, let A be an element of IF‘ZQ of order 8 such that \97¢ = 1.
Note that A € F} if e = +. Also, if ¢ = ¢ mod 8 and |Z]| = 2, let y := NIy € SLi(q), and if
g =e mod 8 and |Z| =4, let y := diag(A\, \, A\, =) € SLi(q).

Let Sy be a Sylow 2-subgroup of U containing ENU. Let S be a Sylow 2-subgroup of SLj(q)
containing Sy and y. Denote the image of S in SL3i(q)/Z by S. We have SNUZ/Z = SyZ/Z €
SylL,(UZ/Z). By Lemma[3.36, UZ/Z = U = SL5(q) is 2-generated. So we have

UZ|Z =Tg,2/22(UZ|Z) = (Nyz/z(T) | T < SoZ/Z,m(T) > 2).

Let T < SoZ/Z with m(T) > 2 and T = (T,yZ). Clearly, yZ is an involution of S not
contained in UZ/Z and centralizing UZ/Z. Therefore, we have that m(T) > 3 and Ny z/,(T) <

NSLg(q)/Z(T)- It follows that UZ/Z < T's3(SL5(q)/Z). In particular, U;Z/Z < T's3(SL;(q)/Z)
for i € {1,2}.

From Lemma [3.38] (i), we see that there is some m € SLj(g) such that Uy™ = Us and such that
m normalizes (E,y). So mZ normalizes (EZ/Z,yZ). It is easy to note that (EZ/Z,yZ) = Esg,
and so we have mZ € s 3(SL5(q)/Z). Tt follows that UsZ/Z = (UsZ/Z)™? < Ts3(SLE(q)/Z).

So we have U;Z/Z < Tg3(SL;(q)/Z) for i € {1,2,3}, and Lemma [3.3§ (i) implies that
SLE(q)/Z is 3-generated. O

3.7. Automorphisms of (P)SL,(q). Fix a prime number p, a positive integer f and a natural
number n > 2. Set ¢ := p/ and T := SL,(q). We now briefly describe the structure of Aut(7/Z),
where Z < Z(T), referring to [20] and [I7, Section 2.1] for further details.

Let Inndiag(7T') := Autgy, (q)(T). Note that

Inndiag(T)/Inn(T) = C, g—1)-
The map
¢:T =T, (ay) — (ai;")
is an automorphism of 7" with order f. One can check that ¢ normalizes Inndiag(7). Set
PT'L,(q) := Inndiag(T)(¢).

It is easy to note that (¢) N Inndiag(T') = 1, so that PT'L,(q) is the inner semidirect product of
Inndiag(7T') and (¢).
The map
1:T = Taw (ah)!
is an automorphism of T with order 2. If n = 2, then ¢ turns out to be an inner automorphism of
T, while we have « ¢ PT'L,(q) when n > 3. By a direct calculation, ¢ normalizes Inndiag(7") and
commutes with ¢. In particular, A := PT'L,(q)(¢) is a subgroup of Aut(7’), and we have

A/Inndiag(T) = Cy x C,,

wherea=1ifn=2and a =2 if n > 3.

Now let Z be a central subgroup of T'. It can be easily checked that the natural homomorphism
Aut(T) — Aut(T/Z) is injective. The image of Inndiag(7") under this homomorphism will be
denoted by Inndiag(7'/Z). By abuse of notation, we denote the image of PT'L,(q) in Aut(T/Z2)
again by PT'L,(q) and the images of ¢ and ¢ again by ¢ and ¢, respectively.
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With this notation, we have
Aw(T/Z) = PTL,(q){1).

Note that the natural homomorphism Aut(7") — Aut(7/Z) is an isomorphism and that it
induces an isomorphism Out(7") — Out(T'/Z).

The elements of Inndiag(7'/Z) \ Inn(T'/Z) are said to be the (non-trivial) diagonal automor-
phisms of T/Z. An automorphism of T'/Z is called a field automorphism if it is conjugate to ¢’ for
some 1 <4 < f. The automorphisms of the form at, where o € Inndiag(7T/Z), are said to be the
graph automorphisms of T'/Z. An automorphism of T'/Z is said to be a graph-field automorphism
if it is conjugate to an automorphism of the form ¢t for some 1 < i < f. We remark that these
definitions are particular cases of more general definitions, see [48, Chapter 10].

Proposition 3.39. Let ¢ be a nontrivial prime power, and let n > 2. Then Out(PSL,(q)) is
2-nilpotent.

Proof. From the above remarks, it is easy to see that Out(PSL,(q)) is supersolvable. By [38|
Lemma 2.4 (4)], any supersolvable finite group is 2-nilpotent, and so the proposition follows. O

The following proposition also follows from the above remarks.
Proposition 3.40. Let n > 2 be a natural number. Then Out(SL,(3)) is a 2-group.

3.8. Automorphisms of (P)SU,(q). Let p be a prime number, f be a positive integer and n > 3
be a natural number. Set ¢ := p/ and T := SU,(q). We now briefly describe the structure of
Aut(T/Z), where Z < Z(T), referring to [20] and [I7, Section 2.3] for further details.

Let Inndiag(7T') := Autgy, (q)(SUn(q)). It is rather easy to note that

Inndiag(T)/Inn(T") = Cp g11)-
The map
¢: T — T, (ai;) — (a;;")
is an automorphism of 7" with order 2f. One can check that ¢ normalizes Inndiag(T). Set
PTU,(q) := Inndiag(T)(¢).

It is rather easy to note that (¢) NInndiag(7") = 1, so that PI'U,(q) is the inner semidirect product
of Inndiag(T") and (¢). Note that

PTU,(q)/Inndiag(T") = Cyy.

Now let Z be a central subgroup of T'. It can be easily checked that the natural homomorphism
Aut(T) — Aut(T/Z) is injective. The image of Inndiag(7") under this homomorphism will be
denoted by Inndiag(7'/Z). By abuse of notation, we denote the image of PT'U,(q) in Aut(7/Z)
again by PT'U,(q) and the image of ¢ again by ¢.

With this notation, we have

Aut(T/Z) = PTU,(q).
Note that the natural homomorphism Aut(7') — Aut(7'/Z) is an isomorphism and that it induces
an isomorphism Out(7") — Out(7'/Z).

The elements of Inndiag(7/Z) \ Inn(T/Z) are said to be the (non-trivial) diagonal automor-
phisms of T/Z. An automorphism of T/Z is called a field automorphism if it is conjugate to ¢*
for some 1 < 4 < 2f such that ¢’ has odd order. The automorphisms of the form a¢’, where ¢
has even order and « € Inndiag(7'/Z), are said to be the graph automorphisms of T/Z. There are
no graph-field automorphisms of 7'/Z.

Proposition 3.41. Let q be a nontrivial prime power, and let n > 3. Then Out(PSU,(q)) is
2-nilpotent.
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Proof. We see from the above remarks that Out(PSU,(q)) is supersolvable. So Out(PSU,(q)) is
2-nilpotent by [38, Lemma 2.4 (4)]. O

The following proposition also follows from the above remarks.
Proposition 3.42. Let n > 3 be a natural number. Then Out(SU,(3)) is a 2-group.

3.9. Some lemmas. We now prove several results on the automorphism groups of (P)SL,(q)
and (P)SU,(q), where n > 2 and ¢ is a nontrivial odd prime power.

Lemma 3.43. Let q be a nontrivial odd prime power. Also, let T := SLa(q) and S € Syly(T).
Suppose that o and 3 are 2-elements of Aut(T) such that S* = S = S8 and als,s = fls,s. Then
a=p.

Proof. Let v := ap~! € Caut(r)(S). We have Cryndiag(r)(S) = 1 by [29, Lemma 4.10.10]. There-
fore, it suffices to show that v € Inndiag(T). Clearly, the images of & and 87! in Aut(T)/Inndiag(T)
are 2-elements of Aut(7")/Inndiag(7’). Since Aut(7')/Inndiag(T") is abelian,

~ - Inndiag(T) = (« - Inndiag(T)) - (3~ - Inndiag(T))

is still a 2-element of Aut(7')/Inndiag(T). By [29, Lemma 4.10.10], Cpu(1)(S) is a 2'-group, and
so 7 has odd order. Therefore, « - Inndiag(7") has odd order. It follows that v € Inndiag(T), as
required. O

Lemma 3.44. Let g = p!, where p is an odd prime and f is a positive integer. Let T := PSLs(q),
and let a be an involution of Aut(T). Suppose that Cp(«) has a 2-component K. Then we have

2| f, (f,p) #(2,3) and K = PSLg(pé). In particular, K is a component of Cp(«).

Proof. Note that Cr(a) = Cryy(ry(@).

Assume that a € Inndiag(7"). Noticing that Inndiag(T) = PGL2(q), we see from Lemma
that Cryndiag(r) (@) is solvable. Thus Cr(a) = Crynr)(a) is solvable, and Cr(a) has no 2-
components, a contradiction to the choice of a.

So we have a ¢ Inndiag(7T). By the structure of Aut(PSLy(q)) and since o has order 2, we
can write a as a product of an inner-diagonal automorphism and a field automorphism of order
2. In particular, f must be even. Consulting [29, Proposition 4.9.1 (d)], we see that « itself is a
field automorphism. So we can apply [29, Proposition 4.9.1 (b)] to conclude that Crynqiag(r) (@) =

Inndiag(PS Ly (pé)) = PGLy (p%) Consequently, K is isomorphic to a 2-component of PG Ly (pg)
It follows that (f,p) # (2,3) and K = PSLg(p%). 0

Before we state the next lemma, we introduce some notational conventions for adjoint Chevalley
groups. Given a nontrivial prime power ¢, we denote A;(q) also by B1(¢) and by Ci(gq). Moreover,
Bsy(q) will be also denoted by Ca(q), and As(g) will be also denoted by Ds(q). We also set
D>(q) := A1(q) x A1(q) and *Da(q) := Ai(¢?).

Lemma 3.45. Let ¢ = p/, where p is an odd prime and f is a positive integer. Let n > 3 be a
natural number and e € {+,—}. Let T := PSL5(q), and let o be an involution of Aut(T). Suppose
that Cp(a) has a 2-component K. Then K is in fact a component, and one of the following holds:

(i) K = SLi(q) for some 2 <i <n, wherei > 2 if ¢ =3;

(ii) n is even, and K is isomorphic to a nontrivial quotient of SL%(QQ),‘

(i) e =+, f is even, K = PSLn(pé) or K & PSUn(pé);

(iv) ¢ #3, n=3 ord, and K = PSLy(q);

(v) nis odd, n>5 and K = Bn-1(q);

2
(vi) n is even and K = C1(q);
)

(vil) n is even, n > 6 and K = Dg(‘]);’
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(viii) n is even, n > 6 and K = 2D%(q).
Here, the (twisted) Chevalley groups appearing in (v)-(viii) are adjoint.

Proof. It can be shown that any involution of Aut(7") is an inner-diagonal automorphism, a field
automorphism, a graph automorphism, or a graph-field automorphism (see [I7, Section 3.1.3] or
[29, Section 4.9]).

Case 1: « € Inndiag(T), or « is a graph automorphism.
Set C* := Cryndiag(r) (@) and L* := OP (C*). One can see from [29, Theorem 4.2.2 and Table
4.5.1] that C*/L* is solvable and that one of the following holds:
(1) L* is the central product of two subgroups isomorphic to SL:(q) and SL;_,(q) for some
natural number 7 with 1 <¢ < 7,
(2) n is even and L* is isomorphic to a nontrivial quotient of S’L%(qQ),
(3) nis odd and L* = BnT—l (q),
(4) nis even and L* = Cx (q),
(5) nis even and L* = Dz (q),
(6) n is even and L* = ZD% (q),

where the (twisted) Chevalley groups appearing in the last four cases are adjoint. Since Cr(«) is
isomorphic to Cryn()(a) < C*, we have that K is isomorphic to a 2-component of C* and thus
isomorphic to a 2-component of L*. Therefore, one of the conditions (i)-(viii) is satisfied.

Case 2: « is a field automorphism or a graph-field automorphism.

Again, let C* := Crypdiag(1)(@0)- Since the field automorphisms of PSUy,(g) have odd order and
PSU,(q) has no graph-field automorphisms, we have ¢ = +. Also, f is even since « is a field
automorphism or a graph-field automorphism of order 2. From [29, Proposition 4.9.1 (a), (b)],
we see that C* = PGLn(pg) if v is a field automorphism and that C* = PGUn(pg) if v is a

graph-field automorphism. Since K is isomorphic to a 2-component of C*, it follows that (iii) is
satisfied. 0

Corollary 3.46. Let g = p/, where p is an odd prime and f is a positive integer. Let n > 2 be a
natural number and € € {+,—}. Let Z be a central subgroup of SL%(q) and let T := SL(q)/Z.
Let a be an involution of Aut(T), and let K be a 2-component of Cr(«). Then the following hold:
(i) K is a component of Cp(«), and K/Z(K) is a known finite simple group.
(i) K/Z(K) % M.
(iif) Assume that K/Z(K) = PSL; (q*) for some positive integer 2 < k < n, some nontrivial
odd prime power q¢* and some * € {+,—}. Then one of the following holds:
(a) ¢ =q;
(b) ¢* =q¢* n>4is even, k = 5, and €* =+ ifn > 6;

(c) f is even, k =n, ¢* :pé.

Proof. Set T := T/Z(T) = PSL:(q). Let @ be the automorphism of T induced by .

Clearly, K is a 2-component of Cp(a). It is easy to note that Cr(«) is a normal subgroup of
Cx(@). So K is a 2-component of Cx(@). Lemmas and imply that K is a component of
Cz(@) and that K/Z(K) is a known finite simple group. Applying [37, 6.5.1], we conclude that
K’ is a component of Cr(a). We have K = K’ since K is a 2-component of Cp(«), and so it
follows that K is a component of Cr(a). Also, K/Z(K) = K/Z(K), so that K/Z(K) is a known
finite simple group. Hence (i) holds.

If K/Z(K) = My, then K/Z(K) = My, which is not possible by Lemmas and So
(ii) holds.

Suppose that K/Z(K) = PSL; (g*) for some positive integer 2 < k < n, some nontrivial odd
prime power ¢* and some £* € {+, —}. By Lemmas and one of the following holds:
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1 I?/ (K) = PSL:(q) for some 2 < i < n;
2) n is even and K /Z(K) is isomorphic to PSL%(qQ);
f

(1)
(2)
(3) fiseven, K= PSL,(p )orPSU (pg);
(4) ¢ #3,n=3o0r 4, K= PSLs(q);

(5) nisodd, n >5, K & Bnl()

(6) n is even, n >4, K = Cn( );

(7) nis even, n > 6, K = Dz (q);

(8) n is even, n > 6, KN2D§()

Here, the (twisted) Chevalley groups appearing in (5)-(8) are adjoint. On the other hand, we have
K/Z(K) = PSL§ (¢*). Now, if (1) holds, then PSL§ (¢*) = PSL5(q) for some 2 < i < n, and
[48, Theorem 37| shows that this is only possible when ¢* = ¢, so that (a) holds. Similarly, if (2)
holds, then we have (b). Moreover, (3) implies (c) and (4) implies (a). As Theorem [48, Theorem
37] shows, the cases (5) and (6) cannot occur, while (7) and (8) can only occur when n = 6. As
above, one can see that if n =6 and (7) or (8) holds, then we have (a). O

Lemma 3.47. Let n > 3 and ¢ € {+,—}. Then SL5(3) is locally balanced (in the sense of
Definition .

Proof. Set T := SL;(3). Let H be a subgroup of Aut(7") containing Inn(7"), and let = be an
involution of H. It is enough to show that O(Cg(x)) =1

Assume that O(Cpg(x)) # 1. Then = € Inndiag(T") by [29, Theorem 7.7.1]. By Propositions
and Out(T') is a 2-group. This implies O(Cy(z)) = O(Cron(r) (7)) = O(Crundiag(r) (T))-
Since z is an involution of Inndiag(T) = PGL;,(3), we have O(Cryngiag(r)(z)) = 1 by Corollary
Thus O(Cg(x)) = 1. This contradiction completes the proof. O

Lemma 3.48. Let n > 3 be a natural number, let g be a nontrivial odd power, and let € € {+,—}.
Then any non-trivial quotient of SLE(q) is locally 2-balanced (in the sense of Definition .

Proof. By [25, Theorem 4.61] or [29, Theorem 7.7.4], PSL$(q) is locally 2-balanced. Let K
be a non-trivial quotient of SL;(q). As we have seen, there is an isomorphism Aut(K) —
Aut(PSLE(q)) mapping Inn(K) to Inn(PSL; (q)). So the local 2-balance of K follows from the
local 2-balance of PSL; (q). O

Lemma 3.49. Let g be a nontrivial odd prime power and n > 4 be a natural number. Let
Z < Z(SLy(q)) and T := SL,(q)/Z. Let Ky be the image of

((*1.)  acsui)

in T, and let Ko be the image of

(2 ) nesteo)

in T. Let o be an automorphism of T with odd order such that o normalizes K1 and centralizes
K. Then a|k, i, is an inner automorphism.

Proof. By hypothesis, ¢ = p’ for some odd prime number p and some positive integer f. We have
a € PI'L,(q) since a has odd order and |Aut(T")/PT'L,(q)| = 2. So there are some m € GL,(q)
and some 1 <7 < f such that, for each element (a;;) of SL,(q), o maps (a;j)Z to ((al-j)pr)mZ.

Let x be the image of diag(—1,—-1,1,...,1) € SL,(¢) in T. Then x is the unique involution of
K1, and so we have @ = x. This easily implies that

()
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for some m; € GL2(q) and some my € GLy,—2(q).

Since « centralizes K, we have ((a;;)P )™ = (a;;) for all (a;;) € SLy—2(q). Therefore, the
automorphism SL,,_2(q) — SLn-2(q), (aij) = (a;;)P" is an element of Inndiag(SLy,_2(q)). This
implies 7 = f.

Thus, under the isomorphism Aut(SL2(q)) — Aut(XK;) induced by the canonical isomorphism
SLy(q) = K, the automorphism ok, k, of Ki corresponds to the inner-diagonal automorphism
a : SLa(q) — SLa(q),a — a™, and this automorphism has odd order since « has odd order.
The index of Inn(SL2(q)) in Inndiag(SL2(q)) is 2, and so it follows that & € Inn(SLa(g)). Con-
sequently, ok, k, € Inn(K7). O

By using similar arguments as in the proof of Lemma [3.49] one can prove the following lemma.

Lemma 3.50. Let g be a nontrivial odd prime power and n > 4 be a natural number. Let
Z < Z(SU,(q)) and T := SU,(q)/Z. Let K; be the image of

((*1.) - aes)

inT, and let K5 be the image of

(" ) nestan}

i T. Let o be an automorphism of T with odd order such that o normalizes K1 and centralizes
K. Then ok, i, is an inner automorphism.

Our next goal is to prove the following lemma.

Lemma 3.51. Let ¢ and q* be nontrivial odd prime powers. Let L be a group isomorphic to
SLa(q*). Let Q be a Sylow 2-subgroup of L. Moreover, let V' be a Sylow 2-subgroup of GLa(q)
and Vo := V N SLa(q). Suppose that there is a group isomorphism v : Vo — Q. Let vi,v2,v3 be
elements of V' such that vs = vive and such that the square of any element of {v1,ve,vs} lies in
Z(GLy(q)). For each i € {1,2,3}, let o; be a 2-element of Aut(L) normalizing QQ such that

®i|Q,Q = w_l(cv¢|Vo,Vo)d}-

Then we have 5

(1 O(CL(ai)) =1.

i=1
To prove Lemma [3.51] we need to prove some other lemmas.
Lemma 3.52. Let q¢ be a nontrivial odd prime power with ¢ = 1 mod 4, and let £ € N with
(g — 1) = 2%, Let G be a group isomorphic to SLa(q) and Q € Syly(G). Then the following hold:

(i) There are elements a,b € Q such that ord(a) = 2¥, ord(b) = 4, a®* = a™! and b*> = a? .
(ii) Let a and b be as in (i). Then there is a group isomorphism ¢ : G — SLa(q) such that

A0
o _
<= (0 %)

Jor some A € F with order 2F and

0 1
o _
(%)),
Proof. (i) follows from Lemma
We now prove (ii). Assume that & > 3. By Lemma (1),

nwo 0 ) . " 0 1
{(0 ,u_1> : p is a 2-element oqu}<(_1 O>>
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is a Sylow 2-subgroup of SLy(q). Choose a group isomorphism 1 : G — SLa(q) such that Q¥ = R.
Clearly, since k > 3, @ has only one cyclic subgroup of order 2¥. This implies that

A0
v _
=0 a0)

for some A € Fy with order 2k. Since b ¢ (a), we have

0
0o H
’ _‘(—u‘l 0)

for some 2-element 1 of Fy. Composing ¢ with the automorphism

SLa(q) — SLa(q), A <Mgl (1)> A <g ?)

we get a group isomorphism ¢ : G — SLs(q) with the desired properties. This completes the
proof of (ii) for the case k > 3.

Assume now that k = 2. Let ¢ : G — SLs(q) be a group isomorphism. We have (a¥)? = —I5
since —I5 is the only involution of SLs(q) and ord(a?) = 2. So, by Lemma we may assume

that
A0
v _

b L we have

for some \ € IF(’; with order 4. Since a° = a~

A0\ /o
o xt) —\Lo A
0
W 1%
’ _’<M‘1 0)

for some p € F;. Again we may compose ¢ with a suitable diagonal automorphism of SLa(q) to
obtain a group isomorphism ¢ : G — SLs(q) with the desired properties. O

This implies that

By using similar arguments as in the proof of Lemma [3.52] one can prove the following lemma.
Lemma 3.53. Let q be a nontrivial odd prime power with ¢ = 3 mod 4, and let s € N with
(g+1)2 =2%. Let G be a group isomorphic to SU(q) and Q € Syly(G). Then the following hold:

(i) There are elements a,b € Q such that ord(a) = 2%, ord(b) = 4, a® = a™! and b? = a?"".
(ii) Let a and b be as in (i). Then there is a group isomorphism ¢ : G — SUs(q) such that

A0
© _

or some \ € F*, with order 2° and
q

0 1
0 _
b _.<_1 0>.

Lemma 3.54. Let q be a nontrivial odd prime power with ¢ = 1 mod 4. Let p be a generating
element of the Sylow 2-subgroup of Fy, and let

_ (P (0 1
(7 ) e (),
Let V' be the Sylow 2-subgroup of GLa(q) given by Lemma (i), and let v,w € V such that

v} w?, (vw)? € Z(GLa(q)). Then one of the following holds:
() {v,w, vw} N Z(GLa(a)) # 0.
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(ii) There exist 7,5 € {v,w,vw} with a” = a, b = b> and a® = a~ L.
Proof. Tt is easy to note that (i) holds if v and w are diagonal matrices.
Suppose now that v or w is not a diagonal matrix. If neither v nor w is a diagonal matrix, then
vw is a diagonal matrix. So there exist r, s € {v,w,vw} such that

_ A1l _ M1
() e )

where A1, A2, p1 and ps are 2-elements of IF;.
If \; = A2, then (i) holds. Assume now that A; # A2. Then Ay = —\; since r2 € Z(GL2(q)),
and a direct calculation shows that a” = a, b" = b® and a®* = a~ . [l

Lemma 3.55. Let q be a nontrivial odd prime power with ¢ = 3 mod 4, and let k € N with
(g4 1)2 = 2F. Let V be a Sylow 2-subgroup of GLs(q).

(i) There exist x,y € V with ord(z) = 2", ord(y) = 2 and 2 = 2. We have V N
SLa(q) = (@?)(zy).

(ii) Let  and y be as above, and let a := x> and b := zy. Let v,w € V with v} w?, (vw)? €
Z(GLy(q)). Then one of the following holds:
(a) {v,w,vw} N Z(GLy(q)) # 0.
(b) There exist 7,5 € {v,w,vw} such that a" = a, b" =b* and a®* = a~!.

Proof. (i) follows from Lemma (i), (ii).

We now prove (ii). We have Z(V) = <x2k> by Lemma [24, Chapter 5, Theorem 4.3]. Thus
Z(GLy(q)) NV = (). Clearly, {v,w,vw} N (z) C (22).

If v,w € (), then v,w € <:c2k71>, and it easily follows that (a) holds.

Assume now that v & (x) or w € (). If neither v nor w lies in (), then vw € (x). Consequently,
{v,w,vw} has an element r of the form 227" for some 1 < ¢ < 4 and an element s of the form
x'y for some 1 <4 < 281 If £ = 2 or 4, then (a) holds. Assume now that £ = 1 or 3. It is clear
that a” = a. Furthermore, we have
b= ()™

k—1
2

:xy

_pok—1 k—1
T 02 yxm y2

_ x1—42k*1 (xy)wkfly

=X

_ x1—e2k—1(x—1+2k)e2k—1y

_pok 2k—1
_ 1’1 27402 y

_ ok
.231 £2

Y
£ odd K
odd 1428,

On the other hand, we have
b = (zy)d = :cgkacy = $1+2ky.
Consequently, " = b3. Finally, we also have
o — (x2>:e"y = (22 = (a¥)? = (x—1+2k)2 — 2 gL

Thus (b) holds. O
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Proof of Lemma[3.51] If aj|g.0 = idg for some j € {1,2,3}, then a;; = idy, by Lemma which
implies that
3

[10(CL(e)) < O(CL(ay)) = O(L) = 1.
i=1
Suppose now that «; acts nontrivially on @ for all i € {1,2,3}. Let m € N with |Q| = 2™. Using
Lemma [3.54] (together with Sylow’s theorem) and Lemma we see that there exist a,b € @
and 4,7 € {1,2,3} such that the following hold:
(i) ord(a) = 21, ord(b) =4, a® = a1, b2 = a2" %,
(i) a% =a, b% = b3, a% = a1
Clearly, b% = a’b for some 1 < ¢ < 2m—1,
Assume that ¢* = 1 mod 4. By Lemma there is group isomorphism ¢ : L — SLy(¢*) with

Ao
(2

for some generator A of the Sylow 2-subgroup of (Fg«)* and

0 1
o _
o (0.

Set By == o tagyp for k € {1,2,3}. Let i and j be as in (ii). Also, let

e (1),

Then B; and ¢, normalize Q¥, and we have f;|g¢.g¢ = ¢m;|ge.Qs. Applying Lemma we

conclude that 8; = c,.
o NY [0 u
-1 0) ~\=pt o0

Clearly,
for some 2-element 1 of (Fg«)*. Set
0 u
m; = (_1 0) .

Then B; and ¢p,; normalize Q¥, and we have Bj|qge,g¢ = m,|gv,ge- Applying Lemma we
conclude that 8; = ¢

It follows that Cgr,g+)(8:) N Csr,q+)(Bj) = Z(SLa(q*)). So we have Cp(a;) N Cp(aj) = Z(L),
and this implies that

3
() O(CLlax) =1
k=1

since |Z(L)| = 2.

If ¢* = 3 mod 4, then a very similar argumentation shows that the same conclusion holds.
Here, one has to use Lemma instead of Lemma together with the fact that SLy(¢*) =
S Ug(q*). g

We bring this section to a close with a proof of the following lemma, which will play an important
role in the proof of Theorem [B]

Lemma 3.56. Let q be a nontrivial odd prime power, ¢ € {4+,—} and n > 2 a natural number.
Set T := Inn(PSL; (q)). Let A be a subgroup of Aut(PSL5 (q)) such that T < A and such that
the index of T in A is odd. Let S be a Sylow 2-subgroup of T'. Then we have Fs(T') = Fg(A).

To prove Lemma we need to prove some other lemmas first.
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Lemma 3.57. Let q be a nontrivial odd prime power, € € {+,—}, and let v be positive integer.
Also, let W be a Sylow 2-subgroup of GL5,(q). Then Aut(W) is a 2-group.

Proof. We proceed by induction over r.

Suppose that r = 1. If ¢ = —¢ mod 4, then W is semidihedral by Lemmas and and
so Aut(W) is a 2-group by [19, Proposition 4.53]. If ¢ = ¢ mod 4, then W = Cy: 1 Cy for some
positive integer k£ by Lemmas and and so Aut(W) is a 2-group as a consequence of [22]
Theorem 2.

Assume now that » > 1 and that the lemma is true with » — 1 instead of r. Let W be a Sylow
2-subgroup of GL3,_,(q). Hence, Aut(Wp) is a 2-group. By Lemma we have W = Wy Cs.
Applying [22] Theorem 2], we conclude that Aut(W) is a 2-group. O

Lemma 3.58. Let q be a nontrivial odd prime power, € € {+,—}, and let n > 3 be a natural
number. Let T := SL;(q), and let S be a Sylow 2-subgroup of Inndiag(T'). Then Autprre (4)(S)
1S a 2-group.

Proof. Let a € Npppe (4)(S). It suffices to show that ca|s,s is a 2-automorphism of S.

Let 0 <7y < --- < r¢ such that n = 2" 4 ... 42", Let W; € Syl,(GL5(¢)) for all 1 <4 <.
By Lemma [3.15

Ay
: A e W;
Ay

is a Sylow 2-subgroup of GL5 (q).

Clearly, {cy|r,7 | w € W} is a Sylow 2-subgroup of Inndiag(7"). Without loss of generality, we
assume that S = {cy|r 7 | w € W}.

Let p be the odd prime number and f be the positive integer with ¢ = pf. Since a € PTLE(q),
there exist some m € GLf(q) and some natural number ¢, where 1 </ < fife =4+and1 </ <2f

if € = —, such that
4

(ai5)* = ((ag)? )™

for all (a;;) € T

Let ,

& GL5(q) = GLE(q), (i) — ((ai) )™

It is easy to note that @ is an automorphism of GLZ (¢). Using this, one can see that a ! (cy|r 1) =
Cya|rr for all w e W.

Let w € W. Since o normalizes S, there is some w € W with ¢ a|rr = a ey TT)0 = gl
It follows that w® € wZ(GLE(q)) € WZ(GLE(q)). This implies w®* € W since W is the unique
Sylow 2-subgroup of WZ(GL5(q)). In particular, @ induces an automorphism of W.

Let

Iory

Igrt
for each 1 < i < t. Then d; is a central involution of W for each 1 < i < t. So we have that
(d;)® = (d;)™ is a central involution of W for each 1 < i < t. As we see from Lemma this
already implies that (d;)™ = d; for each 1 < i < t. So there is some m; € GL5,(q) for each
1 <4 <t such that
m1

me
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Now

Wy = Wy, (aij) = ((ai)? )™
is an automorphism of W,. for each 1 < r < t. Applying Lemma we conclude that alww is
a 2-automorphism of W. Since a™!(cy|r 7)o = cya|rr for all w € W, it follows that ca|ss is a
2-automorphism of .S, as required. O

Corollary 3.59. Let q be a nontrivial odd prime power, € € {+,—}, and let n > 3 be a natural
number. Let T := PSL;(q), and let S be a Sylow 2-subgroup of Inndiag(T'). Then Autprie (4)(S)
1S a 2-group.

Lemma 3.60. Let q be a nontrivial odd prime power, ¢ € {+,—}, and n > 3 be a natural number.
Let S be a Sylow 2-subgroup of SL5(q)Z(GLE(q))/Z(GL5(q)), and let Sy be a Sylow 2-subgroup
of PGL;(q) containing S. Then Npgre ()(S) = Npare (¢)(S1)-

Proof. Let Ty be a Sylow 2-subgroup of GLZ(q)) such that S; = ThZ(GL:(q))/Z(GLE(q)).
Let T := Ty N SL;(q). Clearly, we have S = TZ(GL5(q))/Z(GL:(q)). It is rather easy to
show Npars (o (S) = Nars (o (T)Z(GLa(0))/Z(GLa(a)). By [36, Theorem 1], Nags(q)(T) =
TchL;(q)(Tl) < NGL;(q)(Tl)- It follows that NPGLg(q)(S) < NPGL%(q)(Sl)' It is clear that
we also have NPGL%(q) (Sl) < NPGLi(q) (S) L]

Corollary 3.61. Let g be a nontrivial odd prime power, € € {+,—}, and let n > 3 be a natural
number. Let T := PSLS(q), let S be a Sylow 2-subgroup of Inn(T'), and let S; be a Sylow 2-
subgroup of Inndiag(T') containing S. Then Nindiag(1)(S) = Ninndiag(1)(S1)-

We are now ready to prove Lemma [3.56]

Proof of Lemma[3.56, Assume that n = 2 and ¢ = 3 or 5 mod 8. Then S = Cy x Cy by
Lemma [3.13] There is only one non-nilpotent fusion system on S. Since T and A are not 2-
nilpotent, we have that Fg(7T') and Fs(A) are not nilpotent (see [39, Theorem 1.4]). It follows
that Fg(T) = Fs(A).

From now on, we assume that either n > 3, orn =2 and ¢ =1 or 7 mod 8. Let P,Q < S
and a € A such that P* < ). We are going to show that cq|p¢ is a morphism in Fg(T'). By
the Frattini argument, we have a = wu for some w € N4(S) and some u € T. We prove that
cwls,s € Inn(S). This clearly implies that ¢,|p,g is a morphism in Fg(T').

Suppose that n = 2. Then S is dihedral of order at least 8 by Lemma and so Aut(S) is a
2-group by [19), Proposition 4.53]. This implies that Aut(S) = Inn(S), whence ¢, |g,s € Inn(S5).

Suppose now that n > 3. Let S; be a Sylow 2-subgroup of Inndiag(PSL;(q)) containing S.
Since T has odd index in A, we have that A < PI'L{(q). By the Frattini argument, w = wjws
for some wy € Npppe(g)(S1) and some we € Inndiag(PSL7(g)). Since w; normalizes both Sy
and T, we have that w; normalizes S. And since w = wjwy normalizes S, we also have that ws
normalizes S. So wy normalizes S1 by Corollary [3.61) Consequently, w = wiws € Nppre (4)(51)-
By Corollary Cwlsy,s: is a 2-automorphism of Si. So ¢y|s,s is a 2-automorphism of S. Since
S € Syly(A) and w € A, this implies that ¢,|s,s € Inn(S), as required. O

4. THE CASEn <5
In this section, we verify Theorem [A] for the case n <5.

Proposition 4.1. Let q be a nontrivial odd prime power, and let G be a finite simple group. Then
the following are equivalent:

(i) the 2-fusion system of G is isomorphic to the 2-fusion system of PSLs(q);
(ii) the Sylow 2-subgroups of G are isomorphic to those of PSLa(q);
(iii) G = PSL5(q*) for some € € {+,—} and some odd prime power ¢* > 5 with e¢* ~ ¢, or
|PSLy(q)l2 =8 and G = A5.
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In particular, Theorem [4] holds for n = 2.

Proof. The implication (i) = (ii) is clear.

(ii) = (iii): Assume that the Sylow 2-subgroups of G are isomorphic to those of PSL2(q). Hence,
G has dihedral Sylow 2-subgroups of order %(q —1)2(¢+1)2. Applying a result of Gorenstein and
Walter [31, Theorem 1], we may conclude that G = PSLy(g*) for some odd prime power ¢* > 5, or
G = Az. Suppose that the former holds. Then (¢*—1)2(¢*+1)2 = 2|G|2 = (¢—1)2(g+1)2, whence
either ¢* ~ q or —¢* ~ q. Since PSLy(q¢*) = PSUy(q*), this implies that the first statement in
(iii) is satisfied. If G = Az, then |PSLa(q)|2 = |G|2 = 8, so that the second statement in (iii) is
satisfied.

(iii) = (i): Assume that (iii) holds. Set G; := G and Gg := PSLy(q). For i € {1,2}, let
S;i € Syly(G;) and F; := Fg,(G;). Clearly, S; and S are dihedral groups of the same order. Let
i € {1,2}. By [24, Chapter 5, Theorem 4.3], any subgroup of S; is cyclic or dihedral. By [19,
Proposition 4.53|, a dihedral subgroup of S; with order greater than 4 cannot be Fj-essential.
Since the automorphism group of a finite cyclic 2-group is itself a 2-group, a cyclic subgroup of
S; cannot be F;-essential either. So we have that any Fj-essential subgroup of S; is a Klein four
group. Alperin’s fusion theorem [I1, Part I, Theorem 3.5] implies that

Fi = <Aut]:l.(P) | PSS, P=ZEZCyxCyor P= SZ>SZ

If |S;| = 4, then Autz,(S;) is the unique subgroup of Aut(S;) with order 3, because otherwise
Autz, (S;) = Inn(S;), so that [39] Theorem 1.4] would imply that G; is 2-nilpotent. If |S;| > 8,
then Autz, (S;) = Inn(S;) since Aut(S;) is a 2-group by [19, Proposition 4.53], and for any Klein
four subgroup P of S;, we have Autr,(P) = Aut(P) by [24, Chapter 7, Theorem 7.3]. As 51 = S
and as the preceding observations do not depend on whether ¢ is 1 or 2, we may conclude that
F1 = Fy, as required. O

Proposition 4.2. Let q be a nontrivial odd prime power, and let G be a finite simple group. Then
the following are equivalent:

(i) the 2-fusion system of G is isomorphic to the 2-fusion system of PSL3(q);
(ii) the Sylow 2-subgroups of G are isomorphic to those of PSL3(q);
(i) G = PSL5(q*) for some € € {4+, —} and some nontrivial odd prime power ¢* with eq* ~ q,
or (q+1)y =4 and G = M;;.

In particular, Theorem [4] holds for n = 3.

Proof. The implication (i) = (ii) is clear.

(ii) = (iii): Assume that the Sylow 2-subgroups of G are isomorphic to those of PSLs(q).
Hence, a Sylow 2-subgroup of G is wreathed (i.e. isomorphic to Cyr ! Co for some positive integer
k) if ¢ = 1 mod 4, and semidihedral if ¢ = 3 mod 4. Applying work of Alperin, Brauer and
Gorenstein, namely [2] Third Main Theorem] and [3|, First Main Theorem|, we may conclude that
either G = PSL5(q*) for some € € {+, —} and some nontrivial odd prime power ¢* with e¢* = ¢
mod 4, or ¢ = 3 mod 4 and G = M. If the former holds, then ((¢* — ¢)2)%(¢* +¢)2 = |G|z =
((g—1)2)%(g+1)2, and it easily follows that eq* ~ q. If G = My, then 16 = |G|2 = ((¢—1)2)*(g+1)2
and hence (¢ + 1)2 = 4.

(iii) = (i): Assume that (iii) holds. If ¢ = 1 mod 4, then Proposition implies that the
2-fusion system of G is isomorphic to the 2-fusion system of PSLs(q). Alternatively, this can be
seen from [19, Proposition 5.87]. Now suppose that ¢ =3 mod 4. If (¢ + 1)2 # 4, then we could
apply Proposition [3.20] again, but we are going to argue in a more elementary way. Let G; := G
and Gy := PSL3(q). For i € {1,2}, let S; € Syly(G;) and F; := Fg,(G;). Clearly, S; and S
are semidihedral groups of the same order. Let i € {1,2}. By [24, Chapter 5, Theorem 4.3], any
proper subgroup of S; is cyclic, dihedral or generalized quaternion. By [19, Proposition 4.53],
dihedral subgroups of S; with order greater than 4 and generalized quaternion subgroups of 5;
with order greater than 8 cannot be Fj-essential. Since the automorphism group of a finite cyclic
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2-group is itself a 2-group, a cyclic subgroup of S; cannot be F;-essential either. Alperin’s fusion
theorem [11l Part I, Theorem 3.5] implies that

Fi=(Autg,(P) | P=Cy x Cy, P = Qg, or P=15;)g,.

Since Aut(S;) is a 2-group by [19, Proposition 4.53], we have Autz,(S;) = Inn(S;). From [2], pp.
10-11, Proposition 1], one can see that Autz, (P) = Aut(P) for any subgroup P of S; isomorphic
to Co x Cs or QQg. As S1 = S5 and as the preceding observations do not depend on whether 7 is 1
or 2, we may conclude that F; = F;, as required. O]

The next two lemmas are required to verify Theorem [A] for the case n = 4.

Lemma 4.3. Let g be an odd prime power with ¢ = 3 mod 8. Assume that G = A1g or Ai;.
Then the 2-fusion system of G is not isomorphic to the 2-fusion system of PSL4(q).

Proof. Set z := (1 2)(34) € Gand y := (12)(3 4)(56)(7 8) € G. Let g € G be an involution.
Then the cycle type of g is either that of = or that of y. So, by [37, 4.3.1], ¢ is conjugate to = or
y in the ambient symmetric group, which easily implies that g is also G-conjugate to x or y. The
involutions x and y are not G-conjugate as they have different cycle types. It follows that G has
precisely two conjugacy classes of involutions with representatives x and .

By a direct calculation,

S = ((1234)(9 10), (1 2)(3 4), (56 7 8)(9 10), (5 6)(7 8), (1 5)(2 6)(3 7)(4 8))

is a Sylow 2-subgroup of GG. Another calculation confirms that S has precisely 14 involutions
whose cycle type is that of z and precisely 29 involutions whose cycle type is that of y. So there
are precisely two Fg(G)-conjugacy classes of involutions, one of which has 14 elements, while the
other one has 29 elements. In order to prove that Fg(G) is not isomorphic to the 2-fusion system
of PSLy(q), we show that the 2-fusion system of PSL4(q) has a conjugacy class of involutions
with precisely 17 elements.

Let W1 be a Sylow 2-subgroup of G'La(q), and let Wy be the Sylow 2-subgroup of GL4(q)
obtained from Wj by the construction given in the last statement of Lemma Let W :=
Wy N SLy(q) € Syly(SLa(q)), and let R be the image of W in PSLy4(q). The involutions of W,

are precisely the elements
a c
(" ) e ()

where a, b, c € W} and max{ord(a),ord(b)} = 2. Bearing in mind that W; is semidihedral of order
16, which holds because of ¢ =3 mod 8, we may see from Lemma that W has precisely 35
involutions. As one of them is —1I4, and as the product of —I; with an involution of W different
from —1I4 is again an involution, we may conclude that R has precisely 17 involutions that are
images of involutions of W. Since any noncentral involution of SL4(q) is SL4(q)-conjugate to a
diagonal matrix having diagonal entries 1,1,—1,—1, we have that all the noncentral involutions
of SL4(q) are SL4(q)-conjugate. Thus the 17 involutions of R induced by involutions of W are
PSLy(q)-conjugate. As an element of PSL4(q) induced by an involution cannot be conjugate to
an element of PSL4(q) not induced by an involution, it follows that there is an Fr(PSL4(q))-
conjugacy class of involutions with precisely 17 elements. U

Lemma 4.4. Let g be an odd prime power with ¢ =5 mod 8. Assume that G = Moy, Moz or
MecL. Then the 2-fusion system of G is not isomorphic to the 2-fusion system of PSL4(q).

Proof. Let S € Syly(G) and F := Fg(G). Let z be an element of S with order 4 such that (z) is
fully F-centralized. In other words, we have Cg(z) € Syly(Ca(x)). If G = Mag or Mas, then by
[, Ca(z) is a 2-group, whence Cr((z)) = Feg(2)(Ca(2)) = Fog(x)(Cs(x)). If G = McL, then
by [1], G has precisely one conjugacy class of elements of order 4, so that all elements of S with
order 4 are F-conjugate.
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Consequently, we either have that Cz((x)) is nilpotent for all elements x € S with order 4 such
that (z) is fully F-centralized, or all elements of S with order 4 are F-conjugate. We are going
to show that the 2-fusion system of PSLy(q) has neither of these properties.

Let A be an element of F}; of order 4 and let y be the image of diag(1,1,A\,A™!) in PSLy(q).
Clearly, y has order 4. Let R be a Sylow 2-subgroup of PSL,(q) containing a Sylow 2-subgroup
of € := Cpgr,(q(y). Clearly, y € R. Let us denote Fr(PSLs(q)) by G. Then (y) is fully G-
centralized. The centralizer C' is not 2-nilpotent since it has a subgroup isomorphic to SLs(q).
So, by [39, Theorem 1.4], Cg((y)) = Fey(y)(C) is not nilpotent.

Let m denote the matrix
0 X

Lo 0 _x| € SL(4,q).

1 0
A direct calculation, using ¢ = 5 mod 8, shows that m has no eigenvalues, whence m is in particular
not diagonalizable. The image of m in PSL4(q) has order 4, but it is not P.SL4(q)-conjugate to
y. Therefore, PSL4(q) has more than one conjugacy class of elements with order 4. Thus there
is more than one G-conjugacy class of elements with order 4. U

Proposition 4.5. Let g be a nontrivial odd prime power and let G be a finite simple group. Then
the following are equivalent:

(i) the 2-fusion system of G is isomorphic to the 2-fusion system of PSL4(q);

(ii) G = PSLi(q*) for some e € {4+, —} and some nontrivial odd prime power ¢* with eq* ~ q.
In particular, Theorem [4] holds for n = 4.

Proof. The implication (ii) = (i) is given by Proposition
(i) = (ii): Assume that the 2-fusion system of G is isomorphic to the 2-fusion system of PSLy(q).

Then the Sylow 2-subgroups of G are isomorphic to those of PSL4(q). Applying Mason’s results
[41 Theorem 1.1 and Corollary 1.3] and [40, Theorems 1.1 and 3.15], the latter together with [29]
Theorem 4.10.5 (f)], we see that one of the following holds:

(1) G = PSLi(q*) for some nontrivial odd prime power ¢* and some ¢ € {+, —} with e¢* = ¢

mod 4;

(2) G = Ajp or Ay, and ¢ = 3 mod 4;

(3) G = Myy, Mas or McL, and ¢ =5 mod 8.
Let go be a nontrivial odd prime power, g9 € {4+, —}, and ko, sp € N such that 2 = (gg — g¢)2
and 2% = (qo + €0)2. Then we have

GL50 9 GLEO 2 23k0+250+1
IPSLE(qo)]s = [GL (q0)l2 _ 2(1G Ly (q0)]2)° _
2ko (4, 2k0) 2ko (4, 2k0) (4, 2ko)
Let k,s € N such that 2¥ = (¢ — 1) and 2° = (¢ + 1)s.

Suppose that (1) holds, and let k*, s* € N such that 2¥" = (¢* — £)2 and 2°" = (¢* +¢)o. Then
we have

23k*+25*+1 23k+2s+1
e = |G|z = A om
(4,2%7) (4,2%)
Since e¢* = ¢ mod 4, this easily implies e¢* ~ gq.
Suppose that (2) holds. Then 27 = |G|y = 23+2%, whence s = 2 and thus ¢ = 3 mod 8. This is

a contradiction to Lemma So (2) does not hold.
Also, (3) cannot hold because of Lemma O

Proposition 4.6. Let g be a nontrivial odd prime power, and let G be a finite simple group. Then
the following are equivalent:

(i) the 2-fusion system of G is isomorphic to the 2-fusion system of PSLs(q);
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(ii) the Sylow 2-subgroups of G are isomorphic to those of PSLs(q);
(i) G = PSL:(q*) for some nontrivial odd prime power ¢* and some € € {+, —} with e¢* ~ q.

In particular, Theorem[4] holds for n = 5.

Proof. The implication (i) = (ii) is clear, and the implication (iii) = (i) is given by Proposition
5. 20

(ii) = (iii): Assume that the Sylow 2-subgroups of G are isomorphic to those of PSL5(q).
Applying work of Mason [42], Theorem 1.1], it follows that G = PSL{(q*) for some ¢ € {+,—}
and some nontrivial odd prime power ¢*. In view of Lemma [3.15] it is easy to see that a Sylow
2-subgroup of G is isomorphic to a Sylow 2-subgroup of GLj(¢*), while a Sylow 2-subgroup of
PSL5(q) is isomorphic to a Sylow 2-subgroup of GL4(q). Now it is easy to deduce from Lemmas
13.10} [3.11] and [3.14] that a Sylow 2-subgroup of G has a center of order (¢* — ¢)2, while a Sylow
2-subgroup of PSLs(q) has a center of order (¢ — 1)2. It follows that (¢* —¢)2 = (¢ — 1)2. Let
k,s k*,s* € Nwith 28 = (¢ — 1)2,2° = (¢ + 1)2,2F = (¢* — €)2 and 2°" = (¢* + €)2. Then

2B = |GLY(¢")]2 = G2 = |GLa(g)]2 = 27211,

Since 2F" = 2 we thus have k = k* and s = s*. This implies e¢* ~ ¢. g

5. THE CASE n > 6: PRELIMINARY DISCUSSION AND NOTATION

Given a natural number k > 6, we say that P(k) is satisfied if whenever ¢g is a nontrivial odd
prime power and H is a finite simple group satisfying and realizing the 2-fusion system of
PSLi(qo), we have H = PSL; (q*) for some nontrivial odd prime power ¢* and some € € {+, —}
with eqg* ~ qo.

In order to establish Theorem |A| for n > 6, we are going to prove by induction that P(k) is
satisfied for all £ > 6. From now on until the end of Section we will assume the following
hypothesis.

Hypothesis 5.1. Let n > 6 be a natural number such that P(k) is satisfied for all natural
numbers k with 6 < k < n, and let ¢ be a nontrivial odd prime power. Moreover, let G be a finite
group satisfying the following properties:
(i) G realizes the 2-fusion system of PSL,(q);
(i) 0(G) = 1;
(iii) G satisfies (CK).

We will prove the following theorem.

Theorem 5.2. There is a normal subgroup Gy of G isomorphic to a nontrivial quotient of SL, (q*)
for some nontrivial odd prime power ¢* and some € € {4, —} with e¢* ~ q. In particular, P(n) is
satisfied.

The proof of Theorem will occupy Sections In this section, we introduce some notation
and prove some preliminary results needed for the proof.
Foreach A C {1,...,n} of even order, let t 4 be the image of the diagonal matrix diag(dy, ..., d,)

in PSLy(q), where
0 {—1 ifieA

1 ifig A
for each 1 < i < n. If i is an even natural number with 2 < i <nand A ={n—i+1,...,n},
then we write t; for 4. We denote to by ¢, and we write u for t{1,2}-
We assume p to be an element of Iy of order (n,q —1). If p is a square in Fy, then we assume
p to be a fixed element of F, with p = p2.



42 JULIAN KASPCZYK

If n is even, p is a square in Fgy, and 7 is an odd natural number with 1 <7 < n, then

,uIn—i
—pd;

is an element of SL,(q) by Proposition and we will denote its image in PSL,(q) by t;.
If n is even and p is a non-square element of F,, then we denote the matrix

(e ™)
pIn/Q

by w, and if w € SL,(q), then we use w to denote its image in PSL,(q).

Note that, by Proposition any involution of PSL,(q) is conjugate to t; for some 1 <i <n
such that ¢; is defined, or to w (if defined).

Next, we construct a Sylow 2-subgroup of Cpgp,, (q)(t) containing some “nice” elements of
PSL,(q). Take a Sylow 2-subgroup V of GL2(q) containing each diagonal matrix in G Ly(q) with
2-elements of F; along the main diagonal. Similarly, we assume V5 to be a Sylow 2-subgroup
of GL,—4(q) containing each diagonal matrix in G L;,—4(g) with 2-elements of F; along the main
diagonal. Now let W be a Sylow 2-subgroup of GL,,_2(q) containing

{(* p) s acvmen.

If n = 6, then we assume that V' = V5 and that W is the Sylow 2-subgroup
of GL4(q).

W s) amev) ()

Let ¢ := diag(1,...,1,—1,—1) € SL,(q). Then we have

CSLn(Q)(t) = {(A B) : A€ GL,—2(q), B € GLy(q),det(A)det(B) = 1} )

It is easy to note that

~

- {(A B) . A W,B e V,det(A)det(B) — 1}

is a Sylow 2-subgroup of Cgy,, () (t). Let T denote the image of T in PSL,(q). As the centralizer

of t in PSLy(q) is the image of Cgy,, (g (t) in PSL,(q), we have that T is a Sylow 2-subgroup of
Cpsi,(q(t). We assume S to be a Sylow 2-subgroup of PSLy(q) containing 7. Since Cs(t) =
T € Syla(Cpsr,(q)(t)), we have that (t) is fully Fs(PSLy(q))-centralized.

Let K7 be the image of
A
{( 12) A€ SLng(q)}

in PSL,(q), and let K3 be the image of

(1) wessi)

in PSLy(q). Clearly, K1 and Ka are normal subgroups of Cpgr,, (q)(t) isomorphic to SL;, 2(q)
and SLs(q), respectively. Define X to be the image of

{(A 12> :AeWﬁSLn_g(q)}
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in PSLy(q), and define X2 to be the image of

{(I"Q B) : Bevn SLz(q)}
in PSLy(q).

Note that X; =T N K; € Syly(K7) and Xy =T N Ky € Syly(K3). Define
Ci = ]:Xl(Kz)
fori € {1,2}. By [I1} Part I, Proposition 6.2], C1 and Cz are normal subsystems of Fr(Cpgr,, (q)(t))-

Lemma 5.3. Let F := Fg(PSLy(q)). If ¢ =1 or 7 mod 8, then the components of Cx((t)) are
precisely the subsystems C1 and Co. If ¢ = 3 or 5 mod 8, then C; is the only component of Cr((t)).

Proof. Set C := Cpgr, (q)(t). It is easy to note that the 2-components of C are precisely the
quasisimple elements of {K1, K2}. Asn > 6 and as K1 = SL,_2(q) and Ky = SLy(q), it follows
that the 2-components of C' are K1 and K> if ¢ # 3, and that K is the only 2-component of C' if
q=3.

By Lemma K1/Z(K) is not a Goldschmidt group. If ¢ # 3, then the lemma just cited
also shows that Ko/Z(K3) is a Goldschmidt group if and only if ¢ = 3 or 5 mod 8.

Now we apply Proposition to conclude that Frak, (K1) and Frak,(K2) are precisely the
components of Fr(C) if ¢ =1 or 7 mod 8, and that Frng, (K1) is the only component of Fr(C)
if ¢ = 3 or 5 mod 8. This completes the proof because Cr((t)) = Fr(C), C1 = Frak, (K1) and
CQ :FTQKQ(K2). O

Lemma 5.4. Let F := Fs(PSLy(q)). Then the factor system Cr((t))/X1 X2 is nilpotent.

Proof. Set C' := Cpgr,,(¢)(t). It is easy to note that X1 Xo = K1Ky NT. By Lemma E
Cr((t))/X1X2 is isomorphic to the 2-fusion system of C/K;Ky. The factor group C/K1 K> is
abelian. This easily implies that C'/K; K5 has a nilpotent 2-fusion system. Hence Cr((t))/X1 X2
is nilpotent. ]

Lemma 5.5. Let Ac W and B € V such that det(A)det(B) = 1. Let

m = <A B) Z(SLa(q) € T.
Then we have m € Z(C1(m)) if and only if A € Z(GLp—2(q)).

Proof. By [34, Proposition 1], we have C1(m) = Fx, (m)(K1(m)).

If A e Z(GLy-2(q)), then m is central in Kj(m), which implies that m lies in the center of
Ci(m,).

We show now that if A ¢ Z(GLp—2(q)), then m ¢ Z(Ci(m)). Assume to the contrary that
A ¢ Z(GLy—2(q)), but m € Z(Ci1(m)). Clearly, m € Z(X1(m)). So m centralizes X;. It easily
follows that A centralizes W N SL,,_2(q). Using Sylow’s theorem, we may see from Lemma
that any element Ay of W which centralizes W N SL,,_2(q) without being central in GL,,—2(q) is
SL,_2(q)-conjugate to an element of W different from Ay. As A centralizes W N SL,_2(q), but
A ¢ Z(GL,—2(q)), it follows that A is SL,_2(g)-conjugate to an element A’ € W with A # A’.
As det(A) = det(A’), we have A’ = A” A for some A” € W N SL,,_2(q). Now, it follows that m is

K;-conjugate to
<A' B> Z(SLa(q)) = <AH 12> <A B> Z(SLn(a)) € Xu(m).

So m is Kj-conjugate to an element of X (m) which is different from m. Therefore, m & Z(Ci(m)),
a contradiction. O

Lemma 5.6. Set F := Fg(PSLy,(q)) and G := Cr((t)). Then hnp(Cg(X1)) = Xo.
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Proof. Set C := Cpgr,,(g)(t). Note that ¢’ = K1 K.

By [24, Chapter 7, Theorem 3.4], we have foc(Cg(X1)) = Cp(X1) N Ce(X1) < Cp(X1)NC' =
C’T(Xl) N X1X2 = Z(Xl)XQ. As hnp(C'g(Xl)) < fUC(Cg(X1)>, it follows that hnp(Cg(Xl)) <
Z(X1)Xo.

Let P be a subgroup of Cr(X1) and let ¢ be a 2'-element of Autc,,(x,)(P). By [37, 8.2.7], we
have

[P, {0)] = [P, (), {p)] < [bmp(Cg(X1)) N P, (p)] < [Z(X1) X2 0 P, ().

Since ¢ € Aute,(x,)(P), K2 < C and Xo = T'N K», it follows [P, {p)] < X2. Consequently,
bup(Cg(X1)) < Xo.

On the other hand, since Ky < O?(Cc(X1)), we have Xo < hnp(Cg(X1)) by [19, Theorem
1.33]. O

Lemma 5.7. Set C := Cpgy, (q)(t). Then Autc(X1) is a 2-group.
Proof. Let m € N¢(X1). We have

m= (""" 4p) Z5Lala)

for some M; € GL,_2(q) and some My € GLy(q) with det(Mp)det(Mz) = 1. Let A € W N
SLy—2(q) and

7= <A b) Z(SL(q)) € X1.

As m normalizes X7, we have

<AM1 -72> Z(SLn(q)) = 2™ € X,.

This easily implies that AM € W N SLy,_2(q). It follows that M; normalizes W N SL,_2(q). By
[36, Theorem 1], we have Ngr, _,(q)(W N SLn-2(q)) = WCqr, _,(q(W). Tt follows that c,|x, x,
is a 2-automorphism. O

Define T to be the image of

{(A In2> :AGVﬂSLg(q)}

in PSL,(q) and T to be the image of

I
{ ( B ) . BelVon SLn4(q)}
I

in PSLy(q). Clearly, Ty and T are subgroups of X;. Recall that we use u to denote {5y € X7.
The following lemma sheds light on some properties of the centralizer fusion system Cg, ((u)).

Lemma 5.8. The following hold.

(i) We have Cx,(u) € Syly(Ck, (w)). In particular, (u) is fully Cy-centralized.
(i) foc(Ce, ((u))) = TV Ts.
(iii) If n =6 and ¢ = 3 or 5 mod 8, then T1 and Ty are the only subgroups of foc(Ce, ((u)))
which are isomorphic to Qg and strongly closed in Ce, ((u)).
(iv) If n > 7 and ¢ = 3 or 5 mod 8, then Ty is the only subgroup of the intersection
foc(Ce, ((u))) N Cx, (Ta) which is isomorphic to Qg and strongly closed in Ce, ({u)).
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(1) acsui)

in PSLy(q) and Cy be the image of
I

(v) Let Cy be the image of

B . A€ SLy_4(q)
I

in PSL,(q). Then any component of Ce,((u)) lies in {Fr, (C1),Fr,(C2)}. Moreover,
Fr,(C1) is a component if and only if ¢ =1 or 7 mod 8, and Fr,(Cs) is a component if
and only ifn>7 or ¢ =1 or 7 mod 8.

Proof. Clearly, Ck, (u) is the image of

A
B : A€ GL3(q),B € GL,—4(q),det(A)det(B) =1
I

in PSLy(q). Let W be the image of

A
B : AeV,B eV, det(A)det(B) =1
I

in PSL,(q). Clearly, we have W < Cx, (u). It is easy to note that Wis a Sylow 2-subgroup of
Ck, (u). Thus Cx, (u) = W € Syly(Ck, (u)). Hence (i) holds.
We have Ce, ((u)) = Foy, (u)(Crk, (v)) = Fiz7(Ck, (u)). The focal subgroup theorem [24, Chapter

7, Theorem 3.4] implies that foc(Ce, (1)) = W N (Ck, (u)). It is casy to see that (Ck, (u)) =
C1C3, where C7 and Cy are as in (v). We thus have foc(Ce, ((u))) = T1T>. Hence (ii) holds.

Now we turn to the proofs of (iii) and (iv). Assume that ¢ = 3 or 5 mod 8. Clearly, C and C»
are normal subgroups of Cg, (u) and we have 77 = C1 N W, Ty =C9N W. This implies that T
and T3 are strongly closed in Cg¢, ((v)). By Lemma we have T1 = Qg and, if n = 6, we also
have Ty = Qg. Clearly, any strongly Cg, ({u))-closed subgroup of foc(Ce, ((u))) = ThT is strongly
closed in Fp,1,(C1C%). Hence, in order to prove (iii), it suffices to show that if n = 6, then T}
and Ty are the only strongly Fr,7,(C1C5)-closed subgroups of T1T» which are isomorphic to Qs.
Similarly, in order to prove (iv), it suffices to show that if n > 7, then T} is the only subgroup of
T, T, which centralizes T, which is isomorphic to Qg, and which is strongly closed in Fr,1, (C1Co).

Continue to assume that ¢ = 3 or 5 mod 8. In order to prove the two statements just mentioned,
we need some observations. As C; = SLy(q), we have that C is not 2-nilpotent. So Fr, (Cy) is
not nilpotent by [39] Theorem 1.4]. Again by [39, Theorem 1.4], it follows that Autc, (T1) is not
a 2-group. So Autc, (71) has an element of order 3. Similarly, if n = 6, then Autc,(72) has an
element of order 3. It follows that there is an element a € Autc,c,(717%) such that a|p, 7, has
order 3, while a|p, 7, = idg,. Moreover, if n = 6, then there is an element 8 € Autc, ¢, (T172)
such that §|p, 7, = idp,, while 8|1, 1, has order 3.

Continue to assume that ¢ = 3 or 5 mod 8. If n = 6, then the observations in the preceding two
paragraphs show together with Lemma that 71 and Tb are the only strongly Fr1,(C1C2)-
closed subgroups of T1T5 which are isomorphic to QJg. As observed above, this is enough to
conclude that (iii) holds. If n > 7, then we may apply the observations in the preceding two
paragraphs together with Lemma to conclude that if Ty is a strongly Fr,7,(C1C2)-closed
subgroup of 7175 such that Ty = Qg and such that Ty centralizes Tb, then Ty = T7. As observed
above, this is enough to conclude that (iv) holds.
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It remains to prove (v). It is easy to note that the 2-components of C, (u) are precisely the
quasisimple elements of {C1,C2}. So (v) can be obtained from Proposition and Lemma
B.21l O

Let G be as in Hypothesis The group G realizes the 2-fusion system of PSL,(q). So, if
R is a Sylow 2-subgroup of G, then Fg(PSL,(q)) = Fr(G). For the sake of simplicity, we will
identify S with a Sylow 2-subgroup R of G and Fs(PSLy,(q)) with Fr(G). Hence we will work
under the following hypothesis.

Hypothesis 5.9. We will treat G as a group with S € Syly,(G) and Fs(G) = Fs(PSLy(q)).
The following lemma will play a key role in the proof of Theorem [5.2]

Lemma 5.10. Let x be an involution of S such that Cs(z) € Syly(Ca(z)). Let C be a component
of Fog(x)(Ca(®)), and let k be a natural number with 3 <k <n. Then the following hold.

(i) There is a unique 2-component Y of Cg(x) such that C = Fogmny (V).

(ii) If C is isomorphic to the 2-fusion system of SLi(q), then we either have that Y/O(Y) =
SL;.(q*)/O(SLi(q*)) for some nontrivial odd prime power ¢* and some € € {+,—} with
gr~eq*;ork=3,(q+1)a=4, and Y/Z*(Y) = M;;.

(iii) IfC is isomorphic to the 2-fusion system of a nontrivial quotient of SLy(q?), then Y/O(Y)
is isomorphic to a nontrivial quotient of SL; (q*) for some nontrivial odd prime power q*
and some € € {+,—} with ¢* ~ eq*.

In order to prove Lemma [5.10] we need the following observation.

Lemma 5.11. Let k > 6 be a natural number satisfying P(k). If qo is a nontrivial odd prime
power and H is a known finite simple group realizing the 2-fusion system of PSLy(qo), then
H = PSL;(q*) for some € € {+,—} and some nontrivial odd prime power ¢* with eq* ~ qq.

Proof. 1t suffices to show that any known finite simple group H satisfies . Without using the
CFSG, this is a priori not clear. It can be deduced from [29] Proposition 5.2.9] if H is alternating,
from [29, Table 4.5.1] if H is a finite simple group of Lie type in odd characteristic, and from [29,
Table 5.3] if H is sporadic. If H is a finite simple group of Lie type in characteristic 2, then H
satisfies since, in this case, no involution centralizer in H has a 2-component (see [0, 47.8

®3))- O

Proof of Lemma[5.10, Since G satisfies (CK]), we have that Y/Z*(Y) is a known finite simple group
for each 2-component Y of Cg(x). Proposition implies that there is a unique 2-component
Y of Cg(x) with C = Fog(z)ny (Y). Thus (i) holds.

Suppose that C is isomorphic to the 2-fusion system of SLy(qo)/Z, where either gy = ¢ and
Z =1,0r qo = ¢*> and Z < Z(SLj(¢?)). In order to prove (ii) and (iii), we need the following
three claims.

(1) The 2-fusion systems of Y/Z*(Y') and PSLy(qo) are isomorphic.

As C = Fog(z)ny (Y), we have that the 2-fusion system of Y is isomorphic to the 2-fusion system
of SLi(q0)/Z. So, by Corollary the 2-fusion system of Y/O(Y") is isomorphic to the 2-fusion
system of SLk(qo)/Z. Lemma mplies that the 2-fusion systems of Y/Z*(Y') and PSLy(qo)
are isomorphic.

(2) We have Y/ Z*(Y') =2 PSLi(q*) for some nontrivial odd prime power ¢* and some e € {+, —}
with go ~eq*; or k=3, (qo+1)2=4 and Y/Z*(Y) = My;.

If & = 3, then it follows from (1) and Proposition If k € {4,5}, then it follows from (1)
together with Propositions and Assume now that k > 6. By Hypothesis and since
k < n, we have that k satisfies P(k). Since Y/Z*(Y) is a known finite simple group, the claim
follows from (1) and Lemma [5.11]
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(3) Suppose that Y/Z*(Y') =2 PSL;(q*), where ¢* and € are as in (2). Then we have Y/O(Y) =
SLi.(q*)/U, where U < Z(SL3,(q*)) and the index of U in Z(SLi(q*)) is equal to the 2-part of
|Z(SLk(q0))/Z|.

The group Y/O(Y) is a perfect central extension of PSL(q*). Since Y/O(Y') is core-free, the
center of Y/O(Y) is a 2-group. So, by Lemmas and there is a central subgroup U of
SLi(q*) with Y/O(Y') = SLi(¢*)/U. The claim now follows from

|PSLk(q0)|21Z(SLk(q0))/Z|2 = |SLk(q0)/Z2
=Yz
=Y/Z*(Y)]2|1Z(Y/O(Y))]
= |PSLk(q)|2|1Z(SLi(¢"))/U|.

Here, the second equality follows from the fact that Y realizes C, the third one holds since
|Z*(Y)|2 = |Z*(Y)/O(Y)|2 = |Z(Y/O(Y))|2 = |Z(Y/O(Y))|, and the fourth one follows from
(1).

Assume that ¢ = ¢ and Z = 1. By (2) and (3), one of the following hold: either k¥ = 3,
(q+1)2 =4 and Y/Z*(Y) = Miy; or Y/O(Y) = SLi.(¢*)/U, where ¢* is a nontrivial odd prime
power, ¢ € {+,—}, ¢ ~ eq*, U < Z(SL;(q*)) and the index of U in Z(SL%(¢")) is equal to the
2-part of |Z(SLk(q))|. Assume that the latter holds. As g ~ e¢*, we have (¢ —1)2 = (e¢* — 1)2 =
(¢* —¢€)2. Since |Z(SLk(q))| = (k,q—1) and |Z(SL5(¢*))| = (k,q¢" —¢€), it follows that the 2-part
of |Z(SLi(q))| is equal to the 2-part of |Z(SLj(q*))|. It follows that U = O(Z(SL;(q*))) =
O(SL5(¢*)). This completes the proof of (ii).

Assume now that qo = ¢?. Then, since ¢> = 1 mod 4 , (2) und (3) imply that Y/O(Y) is
isomorphic to a nontrivial quotient of SLj (¢*) for some nontrivial odd prime power ¢* and some
e € {+, -} with ¢> ~ e¢*. Thus (iii) holds. O

6. 2-COMPONENTS OF INVOLUTION CENTRALIZERS

In this section, we continue to assume Hypotheses and We will use the notation
introduced in the last section without further explanation.

The main goal of this section is to describe the 2-components and the solvable 2-components
of the centralizers of involutions of G.

6.1. The subgroups K and L of Cg(t). We start by considering Cg(t). Let F := Fg(G) =
Fs(PSLy(q)). Since (t) is fully F-centralized, we have that T' = Cg(t) € Syly(Cg(t)). Also, note
that F7(Ca(t)) = Cr((t)) = Fr(CpsL, (g (t))-

Proposition 6.1. There is a unique 2-component K of Cq(t) such that C1 = Frag(K). We
have K/O(K) = SL%_,(q*)/O(SL;_5(q*)) for some nontrivial odd prime power ¢* and some
e € {+, =} with q ~ eq*. Moreover, K is a normal subgroup of Cq(t).

Proof. Set F := Fg(G). By Lemma C1 is a component of Cr((t)). Lemma (i) implies
that there is a unique 2-component K of Cg(t) such that C; = Frak(K). By definition, the
component C; is isomorphic to the 2-fusion system of SL,_2(¢). Lemma m (ii) implies that
K/O(K) = SL;_5(q*)/O(SL: _5(q*)) for some nontrivial odd prime power ¢* and some ¢ € {4, —}
with ¢ ~ eq*. B

It remains to show that K is a normal subgroup of Cg(t). Suppose that K is a 2-component of

Ce(t) such that K = K. Set C := Frap(K). Since K is subnormal in Cg(t), it easily follows from

[LT, Part I, Proposition 6.2] that C is subnormal in C'z((t)). Moreover, C = C; as K = K. Hence C
is a component of Cx({t)). But as a consequence of Lemma [5.3] there is no component of Cx((t))

which is isomorphic to C; and different from C;. So we have C; = C. The uniqueness in the first
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statement of the proposition implies that K = K. Consequently, C¢(t) has no 2-component which
is different from K and isomorphic to K. So K is characteristic and hence normal in Cg(t). O

From now on, K, ¢* and ¢ will always have the meanings given to them by Proposition [6.1

Our next goal is to prove the existence and uniqueness of a normal subgroup L of Cg(t) :=
Ca(t)/O(Cq(t)) such that L = SLa(g*), and to show that the image K of K in Ci(t) and L are
the only subgroups of Cg(t) which are components or solvable 2-components of C(t). First, we
need to prove some lemmas.

Lemma 6.2. Let A€ W and B € V such that det(A)det(B) = 1. Let
A
m = B Z(SLy(q)) €T.

Set C(t) := Cq(t)/O(Cq(t)). Then m centralizes K if and only if A € Z(GLyp—2(q))-

Proof. By Lemma we have m € Z(Ci(m)) if and only if A € Z(GL,_2(q)). Let C; be the
subsystem of F(Cg(t)) corresponding to C; under the isomorphism from F7(Cg(t)) to F(Ca(t))
given by Corollary Then we have m € Z(Cy(m)) if and only if A € Z(GL,_2(q)). So it
is enough to show that m € Z(Ci(m)) if and only if m centralizes K. It is easy to note that
C = }—)Tl(l? ). As a consequence of Proposition we have K < Cg(t). By [34, Proposition 1],
we have

Cr(im) = Fi gy (K ().

Since 7 is a 2-element of Cg(t), we have O(K(m)) = O(K) = 1. Applying [23, Corollary 1], it
follows that the center of the product C1(m) is equal to the center of K (m). It follows that that
m € Z(C1(m)) if and only if m centralizes K, as required. O

Lemma 6.3. Suppose that ¢* = 3. Let C := Cg(t) and C := C/O(C). Then:
(i) The factor group C/KCx(K) is a 2-group.
(ii) The centralizer C5(W) is core-free.
(iii) The factor group Cg(w)/Cx(K) is core-free.

Proof. Clearly, C/KCg(K) is isomorphic to a subgroup of Out(K). Since ¢* = 3, we have that
K = SL_,(3). By Propositions and Out(K) is a 2-group. So (i) holds.

Set Cp := KCg(K). As a consequence of (i), Cz(u)/Cg, (u) is a 2-group. Hence, in or-
der to prove (ii), it suffices to show that Cgz (1) is core-free. As uw € K, we have Cg (a) =
Cg(@)Cq(K). It follows that Cz (4)/Ca(K) = Cg(u)/(Cg(n) N Ca(K)) = Cx(u)/Z(K). By
Corollary Cx(u) is core-free. This easily implies that C(u)/Z(K) is core-free. It follows
that Cg (u)/CH(K) is core-free. Consequently, O(Cg, (1)) = O(Cz(K)) = 1. So (ii) follows.

Finally, (iii) is true since C5(n)/Cg, (4) is a 2-group and Cg, (u)/Cg(K) is core-free. O

Lemma 6.4. Let Cg(t) :== Cu(t)/O(C(t)). Then there is a unique pair (A;", As™) of normal
subgroups A1 %, As™ of C(u) such that Cr(u) = Ayt x As™, AT =2 SL5(q*), As™ = SLE_,(q¥)
and @ € Ay . Moreover, the following hold.
() A N X =T
(i) AN Xy =T,
(iii) There is a group isomorphism ¢ : K — SL:_5(q*)/O(SLE_4(q*)) under which A;™ cor-
responds to the image of

{(* ) aesma)
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in SLE_5(q*)/O(SLE_5(q*)) and under which As™ corresponds to the image of

{(" p): pestin)

in SL;,_5(q")/O(SL;,5(q%))-

Proof. For each subsystem G of Fr(Cg(t)), we use G to denote the subsystem of Fx(Ce(t))
corresponding to G under the isomorphism from Fr(Cg(t)) to Fx(Ce(t)) given by Corollary
Note that C; = Fz(K).

Set H := SL;_5(q*)/O(SL;,_5(q*)). For each even natural number ¢ with 2 <i <n — 2, let h;
be the image of h; := diag(—1,...,—1,1,...,1) € SL;_,(¢*) in H, where —1 occurs precisely 4
times as a diagonal entry.

We claim that there is a group isomorphism ¢ : K — H such that ¥ = h; for some even
2 <14 < n—2. By Proposition we have K 2 K/O(K) = H. As a consequence of Lemmas
and H any involution of SL:_,(¢*) is conjugate to h; for some even 2 < i < n — 2. Since any
involution of H is induced by an involution of SL_,(q*), it follows that any involution of H is
conjugate to h; for some even 2 < i < n —2. As @ is an involution of K, it follows that there is an
isomorphism ¢ : K — H mapping @ to h; for some even 2 < i < n — 2. Assume that i = n — 2.
Then  is central in K. Thus @ € Z(C;) and hence u € Z(C;). This is a contradiction to Lemma
and the definition of C;. So we have i < n — 2.

Set h := u¥ = h;. Also, let Hy be the image of

{(* ) aesma]

in H, and let Hs be the image of

{(Ii B> » Be SL%—Q—i(q*)}

in H. For j € {1,2}, let A;7 be the subgroup of K corresponding to H; under .

We now proceed in a number of steps in order to complete the proof.

(1) We have CE(E)/ = A1+A2+, [A1+,A2+] =1, A1+,A2+ < Cf((ﬂ), u e 141+ and u g A2+.

It is easy to note that Cy(h)’ is the central product of H; and Hy and that Hy and Hs are
normal in Cg(h). Therefore, C(u)" is the central product of AT and AT, and AT, AyT are
normal in C’[—((a). By definition of H; and H,, we have h € H; and h & Hy. Thus 7 € A" and
u g A2+.

(2) We have Cx (1) € Syly(Cx(a)), and {]:)TmA1+(A1+)’}—XTHAQWL(AQJF)} contains every com-
ponent of Ca((1)).

By Lemma (i), we have that (@) is fully Ci-centralized. So we have Cx;(u) € Syly(C ().

Set P := Cx (2)? € Syly(Cu(h)). It is easy to note that the 2-components of Cp(h) are
precisely the quasisimple elements of {H;, Ha}. Proposition implies that the components of
Fp(Cp(h)) are precisely the quasisimple elements of {Fpng, (H1), Fpam, (H2)}.

Thus the components of Cz-((w)) = Fo_(a)(Cr(u)) are precisely the quasisimple elements of

X1
{‘FXilmAl'*‘(Al—F)vmeA2+(A2+)}'
(3) X1NA1T and X1 N Ay are subgroups of foc(Ca((w))) and are strongly closed in Ca-((u)).
We have foc(Cq((@))) = Cx;(u) N Cg(a)" by the focal subgroup theorem [24, Chapter 7,
Theorem 3.4]. So the claim follows from (1).

(4) Suppose that n =6 and ¢ = 3 or 5 mod 8. Then we have i = 2 and hence A1" = SL5(q*) =
Ast. Moreover, X1 N A1t =T and X1 N Ayt =Tp.
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Since n =6 and 2 <i <n —2 =4, we have i = 2. Thus Ay" = H; = SL5(q*) & Hy = Ap™.
By Proposition we have ¢ ~ £¢*, whence ¢* = 3 or 5 mod 8. Clearly, X1 N A;" € Syl,(A;+
and X1 N Ay™ € Syly(As™). Lemmaimplies that X1NA T2 Qs =2 X;NA". By Lemma
(iii), T3 and T5 are the only subgroups of foc(Cz((w))) which are isomorphic to Qs and strongly
closed in Cz-((1)). So, by (3), {(XinAH, X1 NAT} = {T1,To}. We have @ € T1, and @ € A"
by (1). It follows that X1 N A;T =Ty and X7 N A" = Ts.

(5) Suppose that n =6 and ¢ =1 or 7 mod 8, or that n > 7. Then we have i = 2, and hence
Ayt 2 SL5(q*) and Ay™ = SLE_,(q*). Moreover, X1 N AT =Ty and X; N As™ = To.

We begin by proving that X; N As™ = T5. As a consequence of Lemma (v), Cz-((w)) has a
component with Sylow group T5. Applying (2), we may conclude that To =X NA; T or X1NAy™.
Since @ € Af by (1), but @ & Ty, we have X1 N Ay = Tb.

We show next that ¢ = 2. Using Proposition or using the order formulas for |SL,_4(q¢*)]
and |SU,,—4(q*)| given by [33, Proposition 1.1 and Corollary 11.29], we see that

1SL5,_4(a")l2 = [SLn-a(q) ]2 = |Ta| = |A2 |2 = |[Ha|2 = |SL;,_5_i(q")|2-
Using the order formulas cited above, we may conclude that n —2 —¢ =n — 4, whence ¢ = 2. In
particular, A1" = SL5(q*) and As™ = SLE_,(g%).

It remains to prove X;NA; " =Ty. If ¢ = 1 or 7 mod 8, then Lemma (v) shows that Cz-((u))
has a component with Sylow group T3. Since @ € Ty, but @ ¢ As™, we have X1 N A;" = T by
(2).

Now suppose that ¢ = 3 or 5 mod 8. Then we have ¢* = 3 or 5 mod 8 since g ~ £q*. So, by
Lemma a Sylow 2-subgroup of A;™ is isomorphic to Qg. In particular, X; N A;T = Qg. By
(3), X1 N A;T is a subgroup of foc(Ca((w))) and is strongly closed in Cz-((@)). Moreover, by (1),
X1 N AT centralizes X1 N Ayt = Th. Lemma (iv) now implies that T3 = X7 N AT,

(6) CE(E)/ = A1+ X A2+.

We have A1+ = SL5(¢*) by (4) and (5), and @ € Z(A;T) by (1). It follows that Z(A; ™) = (u).
By (1), A;T N Ayt < Z(A1") and @ € Ayt N Ay™. Tt follows that A;T N As™ = 1. So (1) implies
that Cf(<’lj)/ = A1+ X A2+.

(7) Assume that A1° and As° are normal subgroups of Cy () such that Cy(u) = A1° x As°,
A = SL%((]*), Ap® SL;E,L_4((]*) and @ € A1°. Then A° = A1+ and Ay° = A2+.

Let j € {1,2}. As a consequence of (4) and (5), A;* is either quasisimple or isomorphic to
SLy(3). In either case, it is easy to see that A, is indecomposable, i.e. A;T cannot be written as
an internal direct product of two proper normal subgroups. Moreover, |A;1/(A17)| and |Z(Ay™))|
as well as |47 /(A2")'| and |Z(A;7)| are coprime. A consequence of the Krull-Remak-Schmidt
theorem, namely [35, Kapitel I, Satz 12.6], implies that {A; T, AyT} = {A1°, A2°}. Since 4 € AT
and U € A2°, we have A1 = A1° and AT = Ay°.

(8) The isomorphism ¢ : K — H maps A1 " to the image of

{(* ) aesma}

{(" p): pestia)
mn H.

By (4) and (5), we have i = 2. So the claim follows from the definitions of A;% and Ay™. O

in H and As™ to the image of

From now on, A;" and A>™ will always have the meanings given to them by Lemma
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Lemma 6.5. Let C := Cg(t) and C := C/O(C). Then A1 and Ayt are normal subgroups of

C@(ﬂ)
Proof. We have Cg(u) < Cgy(u) as K < C. Thus Cg(u)’ < Cgy(u). Having this observed, the
lemma is immediate from Lemma [6.4] ]

Let C := Cg(t) and C := C/O(C). Next we introduce certain preimages of A1 and As™ in
Cc(u). By Corollary we have Cz(u) = Cc(u). We may see from Proposition that there
is a bijection from the set of 2-components of C(u) to the set of 2-components of C(#) sending
each 2-component A of Cc(u) to A.

Suppose that ¢* # 3. Then A;" is a component and hence a 2-component of C (). We use Ay
to denote the 2-component of Cc(u) corresponding to A;™ under the bijection described above.

Suppose that ¢* # 3 or n > 7. Then A,™ is a component and hence a 2-component of Cx(u).
We use Aj to denote the 2-component of Cc(u) corresponding to As™ under the bijection described
above.

Suppose that ¢* = 3. By Lemma (i), O(Cx(w)) = 1. So the factor group Cc(u)/(Co(u) N
0(C)) is core-free, whence O(Cc(u)) = Cco(u) N O(C). Let O(Ce(u)) < A1 < Ce(u) such
that A;/O(Cc(u)) corresponds to A; T under the natural group isomorphism C¢(u)/O(Ce(u)) —
Cg(w). Furthermore, if n = 6, let O(Cc(u)) < Az < Cc(u) such that Ay /O(Cc(u)) corresponds
to A2 under the natural group isomorphism C¢(u)/O(Ce(u)) — Ca ().

Lemma 6.6. We have T1 < A1 and Ty < As.

Proof. Let i € {1,2}. Set C := Cq(t) and C := C/O(C).

Let Co(u) NO(C) < A; < Cc(u) such that E/(C’c(u) N O(C)) corresponds to A;™ under
the natural group isomorphism Cc(u)/(Cc(u) N O(C)) — Cx(u). We have T; < Cco(u) and,
by Lemma T, < A;7. Thus T; < E If Ayt = SLy(3), then we have A; = E and thus
T; < A;. Assume now that 4;" is a component of Cg(u). Then A; is the 2-component of Ce(u)
associated to the 2-component Z@/(Cc(u) NO(Q)) of Ceo(u)/(Ceo(u)NO(C)). So, by Proposition
A, = 0% (E), and hence T; < A;. O

Lemma 6.7. There is an element g € G such that T19 = Xo and Xo9 = T4. For each such g € G,
we have u9 =t and t9 = u.

Proof. The first statement easily follows from Fg(G) = Fs(PSLy(q)). By Lemma the groups
T1 and X5 are generalized quaternion. So w is the only involution of 77 and ¢ is the only involution
of Xo. Thus v9 =t and t9 = u for any g € G with T19 = X5 and X9 = T7. O

With the above lemmas at hand, we can now prove the following proposition.

Proposition 6.8. Take an element g € G such that T\9 = Xo and X9 = Ty. Set C := Cg(t)
and C := C/O(C). Let L := A19. Then the following hold.
(i) L < Ce(u).
(ii) L is subnormal in C and L = SLs(q*).
(iii) The subgroups K and L are the only subgroups of C which are components or solvable
2-components of C. In particular, K and L are normal subgroups of C.

Proof. By Lemma we have t9 = u and u9 =t. Hence Cc(u)? = Cc(u). As A; is a subgroup
of Cc(u), we thus have L = A19 < Cc(u). So (i) holds.

Before proving (ii), we show that C7(K) is a normal subgroup of L containing X,. Since
Ca(K) < C, we have C3(K) = LN Cx(K) < L. Because of Lemma we have Xo = 119 <
A9 = L. Thus X, < L. By the definition of X, and by Lemma we have Xy < C’(j(f(). Thus
X, < Oz (K).
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Note that X5 is generalized quaternion by Lemma and in particular nonabelian.

We now prove (ii) for the case ¢* # 3. Then A; is a 2-component of Cc(u). As g normalizes
Cc(u) and L = A9, it follows that L is a 2-component of Cc:(u). So L is a 2-component of Cx ().
Moreover, we have A;/O(A1) = SLa(q*) since A1/(A1 N O(C)) =2 A] = Ayt =2 SLy(q*). Hence
L/O(L) is isomorphic to SLy(g*). The group C3(K)O(L)/O(L) is normal in L/O(L), and it is
nonabelian since Xo < Cz(K). As L/O(L) is quasisimple, it follows that C7z(K)O(L) = L. So
C7(K) has odd index in L. Since L is a 2-component of Cx (%), we have O? (L) = L. It follows
that L = C3(K) < Cz(K). Since L is subnormal in Cg (@) and C5(K) < Cgx(uw), we have that
L is subnormal in C5(K). Hence L is subnormal in C. As C' is core-free, we have O(L) = 1. It
follows that O(L) = L N O(C) and hence L = L/O(L) = SLy(q*). So we have proved (ii) for the
case ¢* # 3.

Assume now that ¢* = 3. Then O(C¢(u)) = Ce(u) N O(C), O(Cc(u)) < A < Ce(u), and
A1/O(Cc(u)) corresponds to A1 T 2 SLo(3) under the natural isomorphism Ce(u)/O(Co(u)) —
Cs(w). By Lemma A" is normal in Cx(w). Hence, A1/O(Ce(u)) is a normal subgroup of
Cc(u)/O(Cc(u)) isomorphic to SLa(3). Since g normalizes Cco(u) and L = A9, it follows that
O(C¢c(u)) < L and that L/O(C¢(u)) is a normal subgroup of Cc(u)/O(Cc(u)) isomorphic to
SLy(3). Since L/O(Cc(u)) corresponds to L under the natural isomorphism C¢(u)/O(Co(u)) —
Cz (1), it follows that L is a normal subgroup of C5(u) isomorphic to SL(3). Recall that Xy <
Cz(K) 9 L. As L has order 24 and X, has order 8, Cz(K) either equals L or has index 3 in
L. However, if the latter holds, then LC#(K)/Cx(K) is a normal subgroup of Cx(u)/Cq(K) of
order 3, which is a contradiction to Lemma (iii). Thus L = C;(K) < Cx(K). As L < Cx(u)
and Cxz(K) < Cg(u), it follows that L is normal in Cz(K) and hence subnormal in C. So we
have proved (ii) for the case ¢* = 3.

We now prove (iii). Clearly, TN K = X;. Also TN L = Xy since |Xs| = [SLa(q)]s =
|SLa(q*)]2 = |L|2 and X5 < L. As a consequence of Lemma the fusion system F(C)/(X1X2)
is nilpotent. Applying Lemma we may conclude that K and L are the only subgroups of C
which are components or solvable 2-components of C. As K and L are not isomorphic, both are
characteristic and hence normal in C. O

It is not difficult to observe that the definition of L in Proposition [6.8] is independent of the
choice of g. From now on, L will always have the meaning given to it by the above proposition.

6.2. 2-components of centralizers of involutions conjugate to t;, i # 2. Having described
the components and the solvable 2-components of the group Cg(t)/O(Ca(t)), we now turn our
attention to centralizers of involutions of G' not conjugate to t.

First we recall some notation from Section [5} Let 1 < ¢ < n. If 7 is even, then ¢; denotes the

image of
In—i
—I

in PSLy(q). We use p to denote an element of [ with order (n,q—1), and if p is a square in F,
then 1 denotes an element of Fy with pu? = p. If n is even, p is a square in F ¢ and ¢ is odd, then

t; is defined to be the image of
pdy
( —u1¢> € SLn(q)

in PSL,(q). It is easy to note that t; lies in 7" and hence in S whenever t; is defined.

Let S denote the set of all subgroups E of PSL,(q) such that there is some elementary abelian
2-subgroup E < SL,(q) with E = EZ(SLy(q))/Z(SLn(q)). For each 3 < i < n, we define S; to
be the set of all elements E of S such that £ contains a PSLy(g)-conjugate of ¢; for some even
2<j <.
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Lemma 6.9. Let 1 <i <n such thatt; is defined. Assume thati # 2, and thati < 5 if n is even.
Let P be a Sylow 2-subgroup of Cpsr, (q)(ti) and F := Fp(Cpgr,(q)(ti)). Then the following hold.

(i) Assume that i & {1,n — 1}. Then F has precisely two components. Denoting them in a
suitable way by &1 and &, the following hold.

(a) &1 is isomorphic to the 2-fusion system of SLy—i(q).

(b) & is isomorphic to the 2-fusion system of SL;(q).

(c) Let Y7 be the Sylow group of £ and let Ya be the Sylow group of E. Then Y1Ys is
normal in P and F/Y1Ys is nilpotent. The group Y;, where i € {1,2}, contains a
PSL,(q)-conjugate of t. Moreover, any elementary abelian subgroup of Y1 of rank at
least 2 s contained in S,—;, and any elementary abelian subgroup of Yo of rank at
least 2 is contained in S;.

(ii) Assume thati =1 ori =n — 1. Then F has a unique component. This component is
isomorphic to the 2-fusion system of SLy_1(q). If Y is its Sylow group, then Y < P and
FJY is nilpotent. Moreover, any elementary abelian subgroup of Y of rank at least 2 is
contained in S,_1.

Proof. Assume that i ¢ {1,n—1}. By hypothesis, we have i # 2, and i < § if n is even. It follows
that ¢ > 3 and n — i > 3. Let J; be the image of

{(A Ii) Ae SLni(q)}

in PSLy(q), and let Jo be the image of

(1) wesna)

in PSLy(q). It is easy to note that J; and Js are the only 2-components of Cpgy,,(¢)(ti). Applying
Proposition[2.16/and Lemma[3.21] we may conclude that & := Fpny, (J1) and & := Fpny,(J2) are
the only components of F = Fp(Cpgr,(g)(ti)). Clearly, & is isomorphic to the 2-fusion system of
SL,_i(q), while & is isomorphic to the 2-fusion system of SL;(q). Set Y1 := PNJ; and Y := PN.Js.
It is easy to note that Y1Y2 = PN JiJa2. As JiJo < Cpgr,(g) (t;), it follows that Y1Y, < P. By
Lemma F/Y1Y3 is isomorphic to the 2-fusion system of Cpgy,,(q)(ti)/J1J2, and it is easy to
note that Cpgr,,(g)(ti)/J1J2 is 2-nilpotent. So F/Y1Y> is nilpotent by [39, Theorem 1.4]. It is
clear from the definitions of J; and Jy that both J; and Js contain a PSL,(q)-conjugate of t.
Hence Y}, has an element which is PSL,(¢q)-conjugate to ¢ for k € {1,2}. Clearly, any elementary
abelian 2-subgroup of Ji, k € {1,2}, lies in S. Moreover, any noncentral involution of .J; is
PSL,(q)-conjugate to t; for some even 2 < j < n — i, and any noncentral involution of Jy is
PSL,(q)-conjugate to t; for some even 2 < j < i. This implies that any elementary abelian
subgroup of Y7 of rank at least 2 is contained in S,_;, and that any elementary abelian subgroup
of Y5 of rank at least 2 is contained in S;. This completes the proof of (i).

We omit the proof of (ii) since it is very similar to the one of (i). O

Proposition 6.10. Let 1 < i < n such that t; is defined. Assume that i ¢ {1,2,n — 1}, and
that i < 5 if n is even. Let x be an involution of S which is G-conjugate to t;. Then Cg(x) has
precisely two 2-components. Denoting them in a suitable way by J1 and Jo, the following hold.

(i) J1/O(J1) is isomorphic to SLS_,(q¢*)/O(SL: _,(¢*)), where € and g* are as in Proposition
(6.1

(i) J2/O(J2) = SL(¢*)/O(SL; (q*)), where € and q* are as in Proposition [6.1]

(iii) Any elementary abelian 2-subgroup of Ji of rank at least 2 is G-conjugate to a subgroup
of S lying in Sp—;, and any elementary abelian 2-subgroup of Jo of rank at least 2 is
G-conjugate to a subgroup of S lying in S;.
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Proof. Let F := Fg(G) = Fs(PSLy(q)). It suffices to prove the proposition under the as-
sumption that (r) is fully F-centralized, and we will assume that this is the case. So we
have Cs(z) € Syly(Ca(z)) and Cs(w) € Syla(Cpsi, (q) (7)) Also, Fey2)(Ca(w)) = Cr((x)) =
Fos(2)(CPsLa(q)(T))-

Clearly, x is PSLy(q)-conjugate to t;. So Lemma (i) shows together with Lemma (1)
that there exist two distinct 2-components J; and Jo of Cg(z) satisfying the following conditions,
where Y] := Cg(z) N Jy and Ys := Cg(x) N Jo.

(1) Fy,(J1) is isomorphic to the 2-fusion system of SL,_;(q).
2) Fy,(J2) is isomorphic to the 2-fusion system of SL;(q).
3) 1Y, is normal in Cg(z), and Cr((x))/Y1Y> is nilpotent.
4) For k € {1,2}, Y, contains a G-conjugate of t.
5) Any elementary abelian abelian subgroup of Y7 of rank at least 2 lies in S,,—;, and any

elementary abelian subgroup of Y5 of rank at least 2 lies in S;.

By (3) and Corollary Ji1 and Jy are the only 2-components of Cg(z). It remains to show
that J; and Jo satisfy (i)-(iii). As Yy € Syly(Ji) for k € {1,2}, (5) implies (iii).

We now prove (ii). The proof of (i) will be omitted since it is very similar to the proof of (ii).

Let s be an element of J; which is G-conjugate to t. Set €' := Cg(s), C := C/O(C) and
Ca(z) = Ca(z)/0(Ca(x)). L B

Since J; and Js are distinct components of Cg(x), we have [Ji, Jo] = 1 by [37, 6.5.3]. As 5 € Ji,
it follows that .Jo is a component of CC (z)( 5). As a consequence of Corollary H and Proposition
. CG )N C has a 2-component H with H= .

By assurnptlon s is G-conjugate to t. So, by Proposition . C has a unique normal subgroup
K isomorphic to SL¢_,(¢*)/O(SL;_,(q*)) and a unique normal subgroup L isomorphic to
SLs(q*). Moreover, KT and L™ are the only subgroups of C which are components or solvable
2-components of C.

Clearly, H is a 2-component of C'5 (). Lemrna implies that H is a 2-component of Cg+ (%)
or of Cr+(7). By Corollary - , we even have that H is a component of Cy+(Z) or Cp+ (). It
is casy to note that H/Z(H H/Z*( ) = E/Z(fg . By Corollary (ii), we have H/Z(H) %
M1, and so Jo/Z(J3) 2 MH Now (2) and Lernrna (ii) imply that J; = SLaO(qo)/O(SLEO(qO)
for some nontrivial odd prime power gy and some g9 € {+, —} with ¢ ~ €9go. Hence H /Z (H) =

J2/Z(J3) = PSL:°(qo). Note that e¢* ~ ¢ ~ eogo and in particular (g *2 _ 1)2 = (g% — 1)2.
Applying Corollary (iii), we may conclude that ¢y = ¢* and ¢y = e. Consequently, we have
J2/O(J2) = SL5(q*)/O(SL5(q*)). So we have proved (ii). O

The proof of the following proposition runs along the same lines as that of the previous result.

Proposition 6.11. Suppose that n is odd and i = n—1, or that n is even, t = 1 and t1 is defined.
Let x be an involution of S which is G-conjugate to t;. Then Cg(x) has precisely one 2-component
J. We have J/O(J) = SL;_(¢*)/O(SL;_,(¢")), where € and ¢* are as in Proposition .
Moreover, any elementary abelian 2-subgroup of J of rank at least 2 is G-conjugate to a subgroup
of S lying in Sp—1.

Proof. Let F := Fg(G) = Fs(PSLy,(q)). It suffices to prove the proposition under the as-
sumption that (x) is fully F-centralized, and we will assume that this is the case. So we
have Cs(z) € Syly(Cq(z)) and Cs(x) € Syly(Cpgr, () (7)) Also, Fey2)(Ca(r)) = Cx((r)) =
Fos(2)(Cpsr, () (2))-

Clearly, = is PSL,(q)-conjugate to t;. Lemma (ii) implies that Cr({z)) has a unique
component &£, and that £ is isomorphic to the 2-fusion system of SL,_1(¢). Applying Lemma
5.10| (i), we may conclude that Cg(z) has a unique 2-component J with & = Frz)ns(J). By
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Lemma (i), J/O(J) = SL:° 1 (q0)/O(SL: 1 (qo)) for some nontrivial odd prime power gy and
some ¢y € {+,—} with egqo ~ ¢.

Set Y := Cg(xz) N J. By Lemma (i), Y < Cs(x) and Cx({z))/Y is nilpotent. Applying
Corollary we may conclude that J is the only 2-component of C(z). Using Lemma (i),
we see that any elementary abelian subgroup of Y of rank at least 2 lies in S,,—1. As Y € Syly(J),
it follows that any elementary abelian 2-subgroup of J of rank at least 2 is G-conjugate to a
subgroup of S lying in S,,—1.

It remains to show that e¢g = ¢ and ¢y = ¢*. Define s := t; if i = 1 and s := t4, where
A:={l,...,n—1},if i = n—1. Then we have s € Cg(t), and s is G-conjugate to z. Set
Cq(t) := Cg(t)/O(Cg(t)). Lemma shows that 5 centralizes K. Hence, K is a component

of C’CW(E). As a consequence of Corollary and Proposition Ca(t) N Ca(s) has a 2-

component H with H = K. Set C := Cg(s) and C := C/O(C). Then H is a 2-component of
C@(?) Since s is G-conjugate to x, C has precisely one component J*, and J7 is isomorphic to
SL:® 1(q0)/O(SL:" {(q0)). By Lemma H is a 2-component of Cj+(f). We sce from Corollary
M (i) that H is in fact a component of C 1 (7). It is easy to see that H/Z(H) = H/Z*(H) =
K/Z(K) = PSL:_,(¢*). Note that e9qp ~ ¢ ~ £¢* and in particular (go?> —1)2 = (¢** —1)2. Using
this, we may deduce from Corollary (iii) that g¢o = ¢* and g9 = €. O

6.3. 2-components of centralizers of involutions conjugate to w. Recall that we assume p
to be an element of F; with order (n,q—1). Recall moreover that if n is even and p is a non-square
element of Iy, then w denotes the matrix

(orn ™)
pIn/Z

and, if w € SL,(q), then w denotes its image in PSL,(q).

Lemma 6.12. Suppose that w is defined. Let P be a Sylow 2-subgroup of Cpgr,,(g)(w), and
let F denote the fusion system Fp(Cpgsr,(q))(w)). Then F has precisely one component. This
component is isomorphic to the 2-fusion system of a nontrivial quotient of SL%(q2). If Y 1is its
Sylow subgroup, then we have Y < P, and F /Y is nilpotent.

Proof. By Lemma (i), Cpsr, (g (w) has precisely one 2-component J, and J is isomorphic to
a nontrivial quotient of S L%(q2). Applying Proposition and Lemma we may conclude
that Fpny(J) is the only component of F. The last statement of the lemma is given by Lemma

[3.6] (i). O

Proposition 6.13. Suppose that w is defined. Let x be an involution of S which is PSL,(q)-

conjugate to w. Then Cq(x) has precisely one 2-component, say J. The group J/O(J) is iso-

morphic to a nontrivial quotient of SL5(qo) for some nontrivial odd prime power qo and some
2

g0 € {+, —} with ¢*> ~ £0qo.

Proof. Let F := Fg(G) = Fs(PSLy(q)). It suffices to prove the proposition under the as-
sumption that (r) is fully F-centralized, and we will assume that this is the case. So we
have Cs(z) € Syly(Ce(x)) and Cs(z) € Syly(Cpgr, (g)(7)). Also, Feym)(Ca(z)) = Cx((r)) =
Fos(z)(Cprspa(q)(2))-

As z is PSLy(g)-conjugate to w, Lemmal[6.12]implies that C'z((x)) has precisely one component,
say &, and that £ is isomorphic to the 2-fusion system of a nontrivial quotient of S’L%(qQ). By
Lemma (i), Cg(z) has a unique 2-component J such that & = Fogans(J). Set Y =
Cs(z)NJ. As a consequence of Lemma[6.12], we have Y < Cg(z), and the factor system Cr((z))/Y
is nilpotent. So, by Corollary J is the only 2-component of Cg(x). Lemma (iii) shows
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that J/O(J) is isomorphic to a nontrivial quotient of SL5(qp) for some nontrivial odd prime
2

power go and some gg € {+, —} with ¢ ~ eoqo. O

7. THE COMPONENTS OF Cg(t)

The goal of this section is to determine the isomorphism types of K and L. In order to do so,
we will apply the signalizer functor techniques introduced by Gorenstein and Walter in [32]. In
particular, we will see that L is isomorphic to SLy(¢*). This will enable us in Section [§ to prove
that a certain collection of conjugates of L generates a subgroup Gy of G which is isomorphic to
a nontrivial quotient of SLE(¢*) and normal in G. This will complete the proof of Theorem [5.2

7.1. 3-generation of involution centralizers. For each 3 < i < n, we define U; to be the set
of all subgroups U of PSL,(q) such that U has a subgroup E with E € §; and m(E) > 3. The
following lemma will be important later in this section.

Lemma 7.1. Let 1 < i < n such that t; is defined. Suppose that i < 5 if n is even. Let x be
an involution of S such that x is G-conjugate to t; and such that (z) is fully Fs(G)-centralized.
Then Cg(z) is 3-generated in the sense of Definition . Moreover, if © > 4, then we have

Ca(z) = (Neg@)(U) | U < Cs(x),U € U;).
If i = 2, then we have
Cg(x) = <NCG(x)<U) ‘ U < Cg(a?),U € Un_2>.

Proof. Set C := Cg(x) and C := C/O(C). Recall that Lo/(C) denotes the subgroup of C' generated
by the 2-components of C' and that L(C) denotes the product of all components of C. Clearly,
Ly (C) = L(C).

First we consider the case (n,i) # (6,3). Then, by Propositions and C has a
2-component J such that J = SL$(¢*)/O(SL;(¢*)) for some k > 4 and such that any elementary
abelian subgroup of Y := Cg(x) N J of rank at least 2 lies in S. If i > 4, then we may assume
that k =4, and if i = 2, then Kk =n — 2. B

Clearly, Y € Syly(J). By Lemma we have that J is 3-generated. So we have

J=(N7U) | U<Y,m(U) > 3).
Set X := Cg(x) N Ly(C). By the Frattini argument, L(C) = jNL(é)(?) and C' = L(C)Ng(X).
It follows that
C=(Ng(U)|U=X,or U <Y and m(U) > 3).
Lemma implies that C' is generated by O(C) together with the normalizers N¢(U), where
U=X,orU<Y and m(U) > 3.
Let E denote the subgroup of S generated by ¢, t(,,_2 1}, {{n—3n—2} and ty,_4,_3). Clearly,

E = Ejg. Since z is G-conjugate to t; and E < Cg(t;), there is a subgroup E, of Cs(x) which is
G-conjugate to E. By [28, Proposition 11.23], we have

O(C) = (Cocy(D) | D < Ey, D = Eg).

As remarked above, any elementary abelian subgroup of Y of rank at least 2 lies in S;. So, if
U <Y and m(U) > 3, then U € Uy,. Also X € U. Clearly, any Eg-subgroup of E, lies in S and
hence in U;.. We therefore have

C=(Nc(U)|U < Cs(x),U € Uy).

Consequently, C' is 3-generated, and the last two statements of the lemma are satisfied.
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Suppose now that (n,i) = (6,3). By Proposition C has precisely two 2-components J;
and Jp, and we have J; & PSL5(¢*) & Ja. Set Vi := Cs(z) N Jy and Ys := Cg(x) N Jo. Since Jy
is 2-generated by Lemma |3.36] we have

Ji=(Nz-(U) | U <Y1,m(U) > 2).

Let y be an involution of Y. We have [Ji, Jo] = 1 by [37, 6.5.3], and so g centralizes J;. As
Z(J1) =1, we have § & J;. Now let U < Y7 with m(U) > 2. Then (U,y) has rank at least 3.
Moreover, it is clear that N7-(U) normalizes (U,y). Thus

i = (Nj(0) | U < YiYa, m(U) > 3).
Interchanging the roles of J; and Jo, we also see that

To = (N5(T) | U < ViYa,m(U) > 3).

By the Frattini argument, C' = J;1J2N7(Y1Y2). Lemma [2.1] implies that C' is generated by O(C)
together with the normalizers No(U), where U < Y1Ys and m(U) > 3. For any Ejg-subgroup A
of Cg(x), we have

O(C) = <CO(C)(B) ‘ B<A B%= E8>.
by [28, Proposition 11.23]. It follows that C' is 3-generated. The proof is now complete. O

Lemma 7.2. Suppose that w is defined. Let x be an involution of S which is PSL,(q)-conjugate
to w. Then Cg(z) is 3-generated.

Proof. Set C := Cg(x) and C := C/O(C). By Proposition C' has a unique 2-component J,
and J is isomorphic to a nontrivial quotient of SL3(qo) for some nontrivial odd prime power go
2

and some € € {+, —} with ¢*> ~ €0qo. Note that gy = 9 mod 8.
First we prove that C' is 3-generated. Let R be a Sylow 2-subgroup of C' and Y := RN J. We
consider two cases.

Case 1: n > 8. B
By Lemma J is 3-generated. Hence

J=(N5U)|U<Y,m(U) > 3).
By the Frattini argument, C' = JNz(Y). So C is 3-generated.
Case 2: n = 6. B
We have J = PSL:’(gp). By Lemma J is 2-generated. Applying the Frattini argument,
we may conclude that
C=(NgU)|U<Y m{U)>2).
Now let U <Y with m(U) > 2. Since T is a central involution of C' and Z(/J) is trivial, we have
T ¢ J and hence T ¢ U. It follows (U, T) has rank at least 3. Moreover, as Z is central in C, we
have N5(U) < N5((U,z)). Clearly, (U,Z) < R. It follows that
C=(NgU)|U<RmU)>3).
Hence C is 3-generated.

Applying Lemma we may conclude that C' is generated by O(C) together with the nor-
malizers No(U), where U < R and m(U) > 3. By Lemma (iii), R has an elementary abelian
2-subgroup of rank 4, say A. By [28] Proposition 11.23], we have

O(C) = {Co(c)(B) | B< A, B = Eg).
So C' is 3-generated. O
Corollary 7.3. Let x be an involution of S. Then Cg(x) is 3-generated.
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Proof. As a consequence of Proposition x is G-conjugate to t; for some 1 < i < n such that
t; is defined or PSL,(q)-conjugate to w (if defined). So the statement follows from Lemmas
and O

7.2. The case ¢* = 3. Recall that our goal is to determine the isomorphism types of K and L.
First we will deal with the case ¢* = 3. We will prove that, in this case, O(Cg(t)) = 1.

Lemma 7.4. Let x be an involution of S, and let J be a 2-component of Cg(x). Let 1 < i <mn
such that t; is defined. Suppose that ¢* = 3 and that x is G-conjugate to t;. Then J/O(J) is
locally balanced.

Proof. By Propositions|[6.8] (iii), and we have J/O(J) = SL;,(3) for some 3 < k < n. So
J/O(J) is locally balanced by Lemma O
Lemma 7.5. Let P and Q) be subgroups of S.
(i) If P € S and m(P) < 2, then there is a subgroup P of S such that P < P, P € S and
m(P) = 3.
(ii) If P and Q are elements of S of rank at least 3, then there exist some m > 1 and a
sequence
P="P,....,P,=0Q,
where P;, 1 < i <m, is a subgroup of S of rank at least 2 lying in S and where
P;C Pyyor Py CF
forall1 <14 < m.

Proof. Suppose that P € S and m(P) < 2. Let S be a Sylow 2-subgroup of SL,(q) such that S is
the image of S in PSL,(q). Note that S is unique. Since P is an element of S, there exists some
elementary abelian 2-subgroup P of SLy(q) such that P is the image of Pin PSL,(q). Clearly,
P < S. We have m(ﬁ) < 3 as m(P) < 2. By Corollary P is contained in an E16-subgroup
of §. This implies (i).

We now prove (ii). Suppose that P and @ are elements of S of rank at least 3. There are
elementary abelian subgroups P and Q of SLy(q) such that P is the image of P in PSL,(q) and
such that @ is the image of Q in PSL,(q). Clearly, P, Q < S. Also m(ﬁ),m(@) > 3. Since S is
3-connected by Corollary [3.33] there exist some m > 1 and a sequence

P="P,...,P,=Q,
where ]5Z (1 < i <'m) is an elementary abelian subgroup of S of rank at least 3 and where
P, C 151'+1 or 151'+1 C P,
forall 1 <7 < m. Let P;, 1 <i < m, denote the image of ]5Z in S. Then the sequence
P=P,....P,=0Q
has the desired properties. O

Lemma 7.6. Suppose that ¢* = 3. For each elementary abelian subgroup E of S of rank at least
2, let
Wg := (0(Cq(x)) | © € EF).

Let P and Q be subgroups of S with P,Q € S and m(P),m(Q) > 3. Then Wp = Wy,.
Proof. By Lemma (ii), there exist some m > 1 and a sequence

P=nP,...,P,=0Q,
where P;, 1 <17 < m, is a subgroup of S of rank at least 2 lying in S and where

P C Pjor Py CF
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for all 1 <i < m. By Lemma (i), there is a subgroup P; of S such that P; € S, m(P;) > 3 and
P, < P, foreach 1 < i < m.

Let 1 <4 < m and let x be an involution of P;. Also let J be a 2-component of Cg(z). As
P; € S, we have that = is G-conjugate to tj for some even 2 < j < n. Therefore, by Lemma
J/O(J) is locally balanced. Applying [32, Corollary 5.6], we may conclude that G is balanced
with respect to P;.

Let 1 <i < m. We have m(P;NP;41) > 2since P; C Py or Py C Py and m(FP;), m(Piy1) > 2.
Hence m(P; N Piy1) > 2. Proposition (ii) implies

Wp,=Wp =Wpapy = Wi =We.,-

Consequently, Wp = Wg, as wanted. ]

Proposition 7.7. Suppose that ¢* = 3. Let x be an involution of S which is G-conjugate to t;
for some even 2 < i < n. Then we have O(Cg(x)) = 1. In particular, O(Cg(t)) = 1.

Proof. We follow the pattern of the proof of [32, Theorem 9.1]. Let E be the subgroup of S
consisting of all ¢4, where A C {1,...,n} has even order. For each elementary abelian 2-subgroup
A of G of rank at least 2, let

Wa:=(0(Cq(y)) | y € A¥).
Set Wy := Wg and M := Ng(Wy). We accomplish the proof step by step.

(1) Ng(S) < M.

Let g € Ng(S). Clearly, E € S, and it is easy to note E9 still lies in S. Lemma implies
that Wy = Wge. On the other hand, we have (W)Y = Wge by Proposition (i). So we have
(Wy)? = Wy and hence g € M.

(2) Let y be an involution of S such that y is G-conjugate to t; for some even 2 < j <n. Then
y s M-conjugate to t;.

We have (y) € S. By Lemma (i), there is a subgroup A of S with (y) < A, A € S and
m(A) = 3. As a consequence of Lemma[3.22] there is an element g of G with 49 < E. By Lemma
and Proposition (i), we have (Wp)? = (Wa)9 = Wa9 = Wy. Thus g € M.

We have y¢ € E, and y? is G-conjugate and hence PSL,(q)-conjugate to t;. It is rather easy
to show that an element of £ is Npgy,, (g (£)-conjugate to t; if it is PSL,(g)-conjugate to t;. So
y? is Npgr,, (g (F)-conjugate and hence Ng(E)-conjugate to t;. As Ng(E) < M, it follows that
y?9 is M-conjugate to t;. Hence y is M-conjugate to ;.

(3) Let y be an involution of S such that y is G-conjugate to t; for some even 2 < j < mn. Then
Caly) < M.

Because of (2), we may assume that (y) is fully Fg(G)-centralized. Then, by Lemmal[7.1] Cc:(y)
is generated by the normalizers N¢,(,)(U), where U is a subgroup of Cs(y) such that there exists
B < U with B € § and m(B) > 3. It suffices to show that each such normalizer lies in M.

Let U and B be as above and let g € N (,)(U). By Lemma and Proposition (i), we
have (Wp)? = (Wp)? = Wps = Wy. Thus g € M and hence N¢,(,)(U) < M, as required.

(4) Let y be an involution of S. Then Ca(y) < M.

We can see from Lemmas and that Z(S) has an involution s which is G-conjugate to
t; for some even 2 < j < n. Let P be a Sylow 2-subgroup of C¢(y) with s € P. By (1), s € M
and hence s € PN M. Now let r € Np(P N M). Then s" € PN M. As a consequence of (1) and
(2), s" and s are M-conjugate to t;. Therefore, there is some m € M with s" = s™. We have
rm~! € Cg(s), and so rm~' € M by (3). Hence r € M. Consequently, Np(PN M) = PN M. It
follows that P = PN M.

Let U < P with m(U) > 3 and let g € N¢,(,)(U). By Lemma any FEg-subgroup of S has
an involution which is the image of an involution of SL,(q). Since m(U) > 3, it follows that U has
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an element u which is G-conjugate to t; for some even 2 < k < n. By the preceding paragraph,
u,ud € U < P < M. As a consequence of (1) and (2), u and u9 are M-conjugate to t;. So there
is some m € M with u9 = u™. Hence gm~! € Cg(u). From (3), we see that Cg(u) < M, and
so gm~t € M. Thus g € M and hence Negy)(U) < M. Since Cg(y) is 3-generated by Corollary
it follows that Cq(y) < M.

(5) M =G.

Assume that M # G. By [28, Proposition 17.11], we may deduce from (1) and (4) that M is
strongly embedded in G, i.e. M N MY has odd order for any g € G\ M. Applying [49, Chapter
6, 4.4], it follows that G has only one conjugacy class of involutions. On the other hand, we see

from Proposition that G has at least two conjugacy classes of involutions. This contradiction
shows that M = G.

(6) Conclusion.

Let y € E7 and let J be a 2-component of Cg(y). By Lemma J/O(J) is locally balanced.
So, by [32, Corollary 5.6], G is balanced with respect to E. Proposition (ii) implies that W)
has odd order. By (5), we have M = G and hence Wy < G. As O(G) = 1 by Hypothesis
it follows that Wy = 1. So we have O(Cg(y)) = 1 for all y € E#, and the statement of the
proposition follows. O

Proposition implies that if ¢* = 3, then K = SL¢ ,(3) and L = SL2(3). Our next goal is
to find the isomorphism types of K and L for the case ¢* # 3.

In general, O(Cpgy,, (q)(t)) is not trivial. So, if ¢* is not assumed to be 3, we have no chance to
prove that O(Cg(t)) = 1. However, we will be able to show that

Ag(F)= ) O(Ca(a)) =1
acF#
for any Klein four subgroup F' of G consisting of elements of the form ¢4, where A C {1,...,n}
has even order. This will later enable us to determine the isomorphism types of K and L for the
case ¢* # 3.

7.3. 2-balance of G. In this subsection, we prove that G is 2-balanced when ¢* # 3.
Lemma 7.8. Set C := Cg(t) and C := C/O(C). Let F be a Klein four subgroup of C. Then

[A=(F),K] = 1.

Proof. We closely follow arguments found in the proof of [32, Theorem 5.2]. B
_ First we consider the case that I’ has a nontrivial element y such that y centralizes K. Then
K normalizes O(Cz(¥)) and, as K < C, O(Cx(y)) also normalizes K. It follows that

(K, 0(Ca(9))] < KN O(Ca®))-
Hence, [K,0(Cg(y))] is a subgroup of K with odd order. By [37, 1.5.5], K normalizes [K, O(Cx(Y))].
It follows that
(K, O(Ca(y))] < O(K).
As O(K) = 1, this implies that O(C#(¥)) centralizes K. By definition of Az(F), we have
A&(F) £ O(Cx(y)). Consequently, A5(F) centralizes K.

Now we treat the case that Cz(K) = 1. For each subgroup or element X of C, let X denote
the image of X in C/Cz(K). Since Cx(K) = 1, we have F = F, and so F is a Klein four
subgroup of C. As K = SLE ,(q*)/O(SLE_5(q*)), we have that K is locally 2-balanced (see
Lemma . Using this together with the fact that the group C=C /Cx(K) is isomorphic to a
subgroup of Aut(K) containing Inn(K), we may conclude that Aa(ﬁ) = 1. By [32, Proposition
3.11], if X is a finite group, B a 2-subgroup of X and N < X, then the image of O(Cx(B)) in
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X/N lies in O(Cx/n(BN/N)). Thus, if y is an involution of F, then the image of O(Cx(¥)) in
C lies in O(C#(¥))- It follows that the image of Ax(F) in C is contained in Aa(ﬁ) = 1. Hence
Ag(F) < Ca(K). O

Lemma 7.9. Let C := Cg(t) and C := C/O(C). Then Cx(K)NCg(L) is a 2-group.

Proof. For convenience, we denote Cx(K) N Cx(L) by Cx(K,L). Since C' is core-free, we have
that C=(K, L) is core-free. So it is enough to prove that Cz (K, L) is 2-nilpotent. By [39, Theorem
1.4], it suffices to show that Cx(K, L) has a nilpotent 2-fusion system.

Let X denote the subgroup of T consisting of all elements of T" of the form

(* 5)2sLala)

with A e WNZ(GLy—2(q)), B€ VNZ(GL2(q)) and det(A)det(B) = 1.
Let A€ W and B € V with det(A)det(B) =1 and

m = (A B) Z(SLn(q)) € T.

Assume that m centralizes K and E Then we have A € Z(GLy,—2(q)) by Lemma Since m
centralizes L, m also centralizes X5. Thus m centralizes X5, and so B centralizes V N SLa(q).
Lemma implies that B € Z(GL2(q)). So we have m € X. Conversely, if A € Z(GL,—2(q))

and B € Z(GLs(q)), then m € C5(K, L) as a consequence of Lemmas and It follows
that TN Cx(K, L) = X.

Let F := Fs(PSLy(q)) = Fs(G). Since X is central in Cpgr,, (q)(t), the only subsystem of
Cr((t)) on X is the nilpotent fusion system on X. It follows that F(Cx(K, L)) is nilpotent. So

Cz(K, L) has a nilpotent 2-fusion system, as required. O
In the following lemma, A; and As have the meanings given to them after Lemma [6.5

Lemma 7.10. Set C := Cg(t). Suppose that q* # 3. Then Ay, Ay and L are the only 2-
components of Cc(u). Moreover, the following hold:
(i) Aj is the only 2-component of Cc(u) containing u.
(ii) Ag is the only 2-component of Cc(u) containing neither u nor t.
(iii) L is the only 2-component of Cc(u) containing t.

Proof. By definition, A; and Ay are 2-components of Co(u). Also, it is clear from the definition
of L (see Proposition that L is a 2-component of Cc(u).

Set C := C/O(C). As a consequence of Lemma Aq and A, are the only 2-components of
Cx(uw). Moreover, L is a component of Cs(). So Lemma shows that A;, Ay and L are the
only 2-components of C=(%). As we have observed after Lemma there is a bijection from the
set of 2-components of Cc(u) to the set of 2-components of Cx(%) sending each 2-component A
of Cco(u) to A. Therefore, Ay, As and L are the only 2-components of C¢(u).

It remains to prove (i), (ii) and (iii). We have T} < A; by Lemma and thus v € A;. From
the definition of L, it is clear that ¢ € L. Moreover, u ¢ L since t is the only involution of L.
Similarly, ¢ € A;. Also, it is easy to see from Lemma that v and ¢ cannot be elements of
As. O

Lemma 7.11. Suppose that ¢* # 3. Let F be a Klein four subgroup of T. Then we have
Ag(F) NCq(t) < O(Cg(t)).

Proof. Set C := Cg(t), D :== Ag(F)NC and C := C/O(C). We are going to show that D is

trivial.



62 JULIAN KASPCZYK

A direct calculation shows that D < A¢(F). For each a € F#, we have O(Cc¢(a)) < O(Cx(a))
as a consequence of Corollary Therefore, we have Ac(F) < Ax(F), and hence D < Ag(F).
Lemma implies that [D, K] = 1. In particular, D < Cx(u) = Cc(u). Fix a subgroup Dy of
Cc(u) with Dy = D. Also, let g € G with v =t and t9 = u (such an element exists by Lemma

[6.7). Note that (Dg)? < (Cc(u))? = Ce(u).

We accomplish the proof step by step.

(1) A1, Az and L are normal subgroups of Cc(u).
This is immediate from Lemma [Z.10l

(2) There is a group isomorphism Aut(A;) — Aut(L) which maps Inn(A;) to Inn(L) and
Aut( Do)7 5(A1) to Auty(L).

Let Autp,(L/O(L)) denote the image of Autp,(L) under the natural group homomorphism
Aut(L) — Aut(L/O(L)). Also, let Aut(pg)s(A1/O(A1)) denote the image of Aut(py)s(A1) under
the natural group homomorphism Aut(A;) - Aut(A1/O(Ar)).

From Lemma E it is clear that (41)9 = L. The group isomorphism Cg-1]a,,r induces a
group isomorphism A;/O(A;1) — L/O(L), and this group isomorphism 1nduces a group isomor-
phism Aut(A;/O(A1)) — Aut(L/O(L)). By a direct calculation, the group isomorphism just
mentioned maps Aut(p,ys(A41/0(A1)) to Autp,(L/O(L)) and Inn(A;/O(A1)) to Inn(L/O(L)).

We have A1/(A1NO(C)) = A = SLy(q*). As SLy(q*) is core-free, it follows that A; NO(C) =
O(A1). So the natural group homomorphism A; — A induces a group isomorphism A;/O(A;) —
Aj. This group isomorphism induces a group isomorphism Aut(A4;/0(A;)) — Aut(4;). By a di-
rect calculation, the group isomorphism just mentioned maps Aut(p,ys(A41/0(A1)) to Aut(D B (A7)

and Inn(A1/O(A1)) to Inn(A;). In a very similar way, we obtain an isomorphism Aut(L/O(L)) —
Aut(L) which maps Autp,(L/O(L)) to Autﬁo(f) = Autp(L) and Inn(L/O(L)) to Inn(L).
As a consequence of the preceding observations, there is a group isomorphism Aut(A;) —

Aut(L) which maps Inn(A;) to Inn(L) and Aut(D G (A1) to Aut5(L), as asserted.

(3) Aut(D G -(A71) < Inn(A4;).

As observed above, Dy = D centralizes K. In particular, D centralizes Ay. This implies that
[Dy, A2] < O(C). As Dy normalizes Ay by (1), we also have that [Dy, As] < As. Consequently,
[Dy, A2] < O(A3z). Because of Lemma we have (A3)9 = Ag. It follows that [(Dg)9, Ag] <
O(Ajp). This easily implies [(Dg)9, A3] < O(A). As Ay = SLZ ,(¢*) by Lemma we have
O(A) < Z(Ay). Tt follows that [Ay, (D)9, As] = [(Do)9, Az, Ag] < [Z(A3), As] = 1. The Three
Subgroups Lemma [37], 1.5.6] implies [A2, (Dg)9] = [Aa, Ag, (Dy)9] = 1. Hence, (Dg)? centralizes

2
As. By (1), (D)9 normalizes A;. Clearly, Autpg (T( ) has odd order. The assertion now follows

from Lemmas - (iii) m and |3 -

(4) D < Nyeps O(CL(D)).

As a consequence of (2) and (3), we have Autyz(L) < Inn(L). This implies D < LCg(L). By
[37, 6.5.3], L < Cx(K). As observed above, [D, K| =1 and hence D < Cx(K). It follows that D
is a subgroup of L(Cx(L) N Cx(K)). By Lemma. 7.9, C5(L)NCH(K) is a 2-group. As D has odd
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order and L < C, this implies that D < L. Now we see that
D<LnN

yeF#

(5) Conclusion.
As F' is a Klein four subgroup of T', we have F' = (y1, y2) for two commuting involutions y; and
y2 of T. For i € {1,2}, we have

w= (" p) Zma)

for some A; € W and B; € V with det(A4;)det(B;) = 1. Let y3 := y1y2, Az := A1 Ay and
Bs := B1Ba. As y1,y2,ys are involutions, we have (B;)? € Z(GLa(q)) for each i € {1,2,3}.
It is easy to note that Xo € Syly(L). If B € VN SLa(g) and

v= ("2 )zt € X
then
= ("2 pn) Z80)
for each i € {1,2,3}. Applying Lemma we deduce that
) oCz@) =1

yeF#
So we have D = 1 by (4). This completes the proof. O
Lemma 7.12. Suppose that ¢* # 3. Then G is 2-balanced.

Proof. Let F be a Klein four subgroup of G and let a be an involution of G centralizing F. We
have to show that Ag(F) N Cg(a) < O(Cg(a)).

Assume that a is G-conjugate to . Then there is some g € G with a9 =t and F9 < T. By
Lemma we have Ag(F9) N Cq(t) < O(Cq(t)). Clearly Ag(F)? = Ag(F9). It follows that
Ag(F) N Cg(a) < O(Cg(a)).

Assume now that a is not G-conjugate to t. Let J be a 2-component of C¢(a). By Propositions
6.10 [6.11|and [6.13] either J/O(J) = SLi(q¢*)/O(SL;,(q*)) for some k > 3, or J/O(J) is isomorphic
to a nontrivial quotient of SL%O(qO) for some nontrivial odd prime power gy and some gy € {+, —}.
So J/O(J) is locally 2-balanced by Lemma Applying [32, Theorem 5.2], we may conclude
that Ac, ) (F) < O(Cg(a)). A direct calculation shows that Ag(F)NCq(a) < Ac, (o) (F). Hence
Ag(F)NCq(a) < O(Ca(a)). d

7.4. The case ¢* # 3: Triviality of Ag(F).

Lemma 7.13. Suppose that ¢* # 3. Assume moreover that ¢ =1 mod 4 orn > 7. Then we have
Ag(F) =1 for each Klein four subgroup F of S.
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Proof. We follow the pattern of the proof of [32, Theorem 9.1].
For each elementary abelian 2-subgroup A of G of rank at least 3, we define

Wi = (Ag(F) | F < A,m(F) = 2).

Let P and @ be elementary abelian subgroups of S of rank at least 3. We claim that Wp = Wy,.
By Corollary (iii), S is 3-connected. So there exist a natural number m > 1 and a sequence

P=P,....P,=Q
such that P;, 1 <i < m, is an elementary abelian subgroup of S of rank at least 3 and such that
P C Piyor Py CF

forall 1 <i < m. By Lemma G is 2-balanced. Proposition [2.8| (ii) implies that Wp, = Wp,_,
for all 1 < ¢ < m. Therefore, Wp = Wy, as asserted.

We use Wy to denote Wp, where P is an elementary abelian subgroup of S of rank at least 3.
Let M := Ng(Wy). We accomplish the proof step by step.

(1) Ng(S) < M.
Let g € Ng(S). Take an elementary abelian subgroup P of S with m(P) > 3. By Proposition
(i), we have (Wp)9 = (Wp)? = Wpy = Wy. Thus g € M.

(2) Let x be an involution of S. Then Cg(x) < M.

By Corollary there is an elementary abelian subgroup P of S with z € P and m(P) = 4.
Clearly, P < Cg(z). Let R be a Sylow 2-subgroup of Cg(x) containing P. By Corollary
Cg(7) is 3-generated. Hence, Cg(7) is generated by the normalizers Ng,(,)(U), where U < R
and m(U) > 3. It suffices to show that each such normalizer lies in M.

So let U be a subgroup of R with m(U) > 3, and let g € N¢,(2)(U). Let Q be an elementary
abelian subgroup of U with m(Q) = 3, and let h € G with R* < S. Then Won = Woen = Wpn =
Wo. Proposition (i) implies that Wg = Wos = Wp = Wy. Applying Propositionh (i) again,
it follows that (Wo)J = (Wq)? = Wgs = Wy. Hence g € M and thus Ng,(,)(U) < M.

(3) M =aG.

Assume that M # G. By [28, Proposition 17.11], we may deduce from (1) and (2) that M is
strongly embedded in G, i.e. M N MY has odd order for any g € G\ M. Applying [49, Chapter
6, 4.4], it follows that G has only one conjugacy class of involutions. On the other hand, we see

from Proposition that G has at least two conjugacy classes of involutions. This contradiction
shows that M = G.

(4) Conclusion.

Let F' be a Klein four subgroup of S. By Corollary[3.34] there is an elementary abelian subgroup
P of S with FF < P and m(P) = 4. Clearly, Ag(F') < Wp. Since G is 2-balanced, Wp has odd
order by Proposition (ii). Since Wp = Wy, we have Wp < G by (3). As O(G) = 1 by
Hypothesis it follows that Wp = 1. Hence Ag(F') = 1. O

Next, we deal with the case that n =6, ¢ =3 mod 4 and ¢* # 3. We show that, in this case,
Ag(F) = 1 for each Klein four subgroup F of S consisting of elements of the form ¢4, where
A C{1,...,n} has even order. We need the following lemma.

Lemma 7.14. Suppose that ¢* # 3. Set £ :=n—4. Let E be the subgroup of T consisting of allt 4,
where A C {1,...,n} has even order. Let E; denote the subgroup of X consisting of all t 5, where
A is a subset of {1,...,n—2} of even order. Then we may choose elements my,...,my € Ni(E1)
and an Eg-subgroup Ey of E with

K = (O(K), Lo (Ck (Ev)), L2 (Ck (Eo))™, . .., Lo (Cr (Ep))™).
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Proof. Set C := Cg(t) and C := C/O(C). Let H := SL%_,(q*)/O(SL:,_5(q*)). Let D be the
subgroup of SLf_,(q*) consisting of all diagonal matrices in SLf,_5(¢*) with diagonal entries in
{1,—1}, and let D denote the image of D in H. Denote by H; the image of

((*1.) acsm)
in H.

We claim that there is a group isomorphism v : K — H which maps E; to D and A; to H;. By
Lemma (iii), there is a group isomorphism ¢ : K — H under which A; corresponds to H;. Since
@ is the only involution of Aj, we have that @# is the image of diag(—1,—1,1,...,1) € SLS_,(q*)
in H. Clearly, E; is elementary abelian of order 2”73, Using Lemma we conclude that E;*
is H-conjugate to D. So there is some a € Inn(H) mapping E\” to D. We may assume that «
centralizes #%. Then H;* = Hy, and the isomorphism 1 := pa maps E; to D and A; to Hy, as
desired.

Using Lemma we can find elements x1,...,2¢ € Ny (D) such that H = (Hy, H{"*, ...,
Hy"t). Therefore, K has elements myq, ..., my such that

K= (A, A7, 4T
and My, ...,my € Ng(Er). From Lemmam, we see that N(E1) = Nk (E1). So we may assume
m; € Nk (Ey) fori € {1,...,¢}. Let Ey := (u,t(34},t{45))- By Lemma we have A1 < Cx(u).
In particular, Ey normalizes A;. Moreover, Ey centralizes T;. We have A; = SLs(q¢*) and
Ty € Syly(A;) (see Lemma . Applying Lemma we conclude that A; < Cp(Ep). As
A < Cx(u) and A < CI?(ET)) < Cx(u), we even have that Ay is a component of C’f((E]). It
follows that
K = (Ly(Cg(Eo)), Ly (Cg(E0))™, ..., Ly (Cr(Eo))™).

Let k € K such that k € C(Ep). As K < C, we have [k, Ey] < O(C) N K = O(K). Thus
kO(K) € Cojo(r)(EoO(K)/O(K)). By Lemma there is an element z € C¢(Ep) such that
kO(K) = 20(K). Observing that z € Ck(Ep) and that k = 2, we may conclude that Cx(Eg) =
Cr(Eo). If 1 <i < £, then Ly (C(Eo))™ = Ly(Cr (E0))™ = Ly(Ck(Ey)) " = Ly (Ck (Eo))™,
where the second equality follows from Proposition It follows that

K = (O(K), Ly (Ck(FEy)), Lo (Cr (Ep))™, ..., Lot (Cr (Ep))™).
This completes the proof. O

Lemma 7.15. Suppose that n = 6, ¢ = 3 mod 4 and ¢* # 3. Let E denote the subgroup of S
consisting of all ta, where A is a subset of {1,...,n} of even order. Then Ag(F) =1 for any
Klein four subgroup F of E.

Proof. We follow the pattern of the proof of [32, Theorem 9.1].
Set Wy := (Ag(F) | F < E,m(F)=2) and M := Ng(W). Since T is the image of

in PSLy,(q), we have T' € Syl,(PSLy,(q)) by Lemma Hence S = T and thus t € Z(S). By
choice of W (see Section [)), we have

v={(* ) amevt (G 1)

We accomplish the proof step by step.
(1) For each subgroup Ey of E with order at least 8, we have Ng(Ey) < M.
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Clearly, E = Ej6. Therefore, the statement follows from the 2-balance of G (see Lemma |7.12))
and Proposition (ii).

(2) Ng(S) < M.
First we prove S < M. By (1), we have E < M. As ¢ =3 mod 4 and S =T, any element of S
can be written as a product of an element of E and an element of S induced by a matrix of the

form
A
B

with A € W N SLy(q) and B € VN SLy(q). So, in order to prove that S < M, it suffices to show
that each element of S induced by a matrix of this form lies in M. If B € V' N SLy(q), then the

image of
Iy
B

in S centralizes the group (tf1 9y,t(2,3},t{343) = Es. So it is contained in M by (1). Hence, in
order to prove that S < M, it suffices to show that if A € W N SLy(q), then the image of

(* )

in S lies in M. So assume that A € W N SLy(q). By the structure of W, there are elements My,
M> of V such that det(M;) = det(M2) and

()= () )

My

The image of

My
I
in S can be written as a product of an element of E and an element of S induced by a matrix of
the form

M,
M,
I
with ]\Afl, ]\Afg € VN SLa(q). The images of
<M1 ) and ]\/ZQ
Iy

I

in S centralize the groups (t(34y,t(45},t{56)) and (t{12y,t(25),(56}), respectively. So they are
elements of M. It follows that the image of

My
My
I
in S lies in M. The image of the block matrix
I

I
I
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in S normalizes E and is thus contained in M. It follows that the image of

A
(* )
in S lies in M. Consequently, S < M.
By Lemma Autpgr, () (S) = Inn(S). As Fs(G) = Fs(PSLn(q)), it follows that Autg(S) =
Inn(S), and so Ng(S) = SCq(S). We have seen above that S < M, and we have C¢(S) < M by
(1). Hence Ng(S) < M.

(3) Ca(t) < M.

Let E; be the subgroup of X; consisting of all t4, where A is a subset of {1,...,n — 2}
of even order. As a consequence of Lemma there is an FEg-subgroup Fy of E such that
K = (O(K),Ck(FEy), Nk(E1)). By (1), Cx(Ep) and Ni(FE;) are subgroups of M. By [28|
Proposition 11.23], we have

O(K) = (Cowx)(B) | B< E,m(B) = 3).
Therefore, O(K) < M by (1). Consequently, K < M. By the Frattini argument,
Cq(t) = KNgg1)(X1).

So it suffices to show that N¢)(X1) < M. Since Fs(G) = Fs(PSLy(q)), we may conclude
from Lemmathat Autc,, ) (X1) is a 2-group. Hence, Ne, ) (X1)/Cop ) (X1) is a 2-group. As
X1 9T =8 € Syly(Cq(t)), it follows that Neg, ) (X1) = SCey1)(X1). We have S < M by (2),
and Cg, ) (X1) < Cg(E1) < M by (1). Consequently, Ne, ) (X1) < M, as required.

(4) Let x be an involution of S which is G-conjugate to t. Then x is M-conjugate to t.

It is easy to see that if an element of T'is PSL,(q)-conjugate to ¢, then it is Cpgr, () (t)-
conjugate to an element of E. As Fg(G) = Fs(PSLy(¢q)) and S = T, it follows that z is
Ca(t)-conjugate and hence M-conjugate to an element y of E. It is rather easy to show that
if an element of E is PSLy,(q)-conjugate to t, then it is Npgy, 4 (E)-conjugate to t. So, as
Fs(G) = Fs(PSLy(q)), we have that y is Ng(F)-conjugate to t. By (1), Ng(F) < M, and so x
is M-conjugate to t.

(5) Let x be an involution of S. Then Cg(x) < M.

Let R be a Sylow 2-subgroup of Cg(x) with Cgs(xz) < R. We have t € Z(S) < Cg(x) and
te M. Thust € RNM. Let r € Np(RN M). Then y :=t" € RN M. As a consequence of
(4), y is M-conjugate to t. So there is an element m of M such that t" = y = t™. We have
rm~t € Cg(t) < M by (3), and so r € RN M. Hence, Np(RNM) = RN M, and thus R = RN M.

By Corollary Cg(x) is 3-generated. Therefore, Cg(z) is generated by the normalizers
Neg (@) (U), where U < R and m(U) > 3. It suffices to show that each such normalizer lies in M.

So let U < R with m(U) > 3, and let g € N¢,(2)(U). Take an elementary abelian subgroup
Q of U of rank 3. Lemma [2.3] shows that any Fg-subgroup of S has an involution which is the
image of an involution of SL,(¢q). This implies that @) has an element s which is G-conjugate to
t. Since 5,89 € U < R < M, we see from (4) that s and s? are M-conjugate to t. So there are
elements m, m’ € M such that s = t™ and s9 = t"™. We have t" = s9 = (t™)9 = t™9. Thus
mgm/~t € Cg(t) < M, and hence g € M. It follows that N, () (U) < M.

(6) M =G.

Assume that M # G. By [28| Proposition 17.11], we may deduce from (2) and (5) that M is
strongly embedded in G, i.e. M N MY has odd order for any g € G\ M. Applying [49, Chapter
6, 4.4], it follows that G has only one conjugacy class of involutions. On the other hand, we see

from Proposition that G has precisely two conjugacy classes of involutions. This contradiction
shows that M = G.

(7) Conclusion.
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Let F' be a Klein four subgroup of E. Clearly, Ag(F) < Wy. By (6), we have Wy < G. Since
G is 2-balanced, W) has odd order by Proposition (ii). As O(G) = 1 by Hypothesis it
follows that Wy = 1. Hence Ag(F) = 1. O

7.5. Quasisimplicity of the 2-components of Cg(t). In this subsection, we determine the
isomorphism types of K and L.

Lemma 7.16. Let x and y be two commuting involutions of G. Set C := Cg(x) and C =
C/O(C). Then any 2-component of Cz(y) is a component of C5(7).

Proof. By [32, Corollary 3.2], Lo (Cz(¥)) = Lo (Cpg)(¥)). We know from Section |§| that L(C)
is a K-group, i.e. the composition factors of L(C) are known finite simple groups. Applying [26],
Theorem 3.5], we conclude that Ly(Crie() = L(Cpe)(#)). Therefore, any 2-component of
Cre) () is a component of C & (). So any 2-component of Cx(¥) is a component of Ca(¥).

Instead of using [26, Theorem 3.5], the lemma could be proved directly by using Corollary
(i) and the results of Section [6] O

Proposition 7.17. K is isomorphic to a quotient of SL;,_5(q*) by a central subgroup of odd
order.

Proof. The proof is inspired from the proof of [32] Theorem 10.1].
For ¢* = 3, the proposition follows from Proposition From now on, we assume that ¢* # 3.
Set C' := Cg(t). Let E denote the subgroup of T' consisting of all ¢4, where A C {1,...,n}
has even order. We assume myq,...,my, where £ := n — 4, to be elements of K and Ej to be an
FEg-subgroup of E with

K = (O(K), Ly (Ck(Ey)), Lo (Cr (Ep))™, ..., Lo (C (Ep))™).

Such elements my, ..., my and such a subgroup Ej exist by Lemma
The proof will be accomplished step by step.

(1) Let f be an involution of Ey. Then Lo (Ck(Ep)) < Lar(Cc(f)).

As K < C, we have CK(E()) < CC(E()). This implies LQI(CK(E())) < LQ/(CC(EQ)). By [32,
Theorem 3.1], we have Ly (Cc, 5y (Eo)) < Lo (Ce(f)). Clearly, Ce s (Eo) = Co(Ep). It follows
that Ly (Cx(Eo)) < Ly (Co(Ep)) < Ly (Ce(f))-

(2) Let F be a Klein four subgroup of Ey. Set D := [Co(x)(F), L2 (Ck (Eo))]. Then D = 1.

Clearly, Ly (Ck(Ep)) normalizes Co(xy(F). Also, 0? (Ly(Ck(Ey))) = Ly (Ck(Ep)), and
Co(k)(F) is a 2'-group. Applying [28, Proposition 4.3 (i)], we conclude that D = [D, Ly (Ck (Ep))]-

Now let f be an involution of F. We are going to show that D < O(Cg(f)). Set M :=
LQ/(Cc(f)). By (1), Lg/(CK(Eo)) < M. A]SO, D < Cc(F) < Cc(f) and M < Cc(f) It follows
that D = [D, Ly (Ck (Ep))] < [Co(f), M] < M.

Let Cq(f) := Cq(f)/O(Ca(f)). By Corollary Caath (f)( t) = Co(f). As a consequence of
Proposition Ly(Cx (f)) = M. Lemma [7.16 1mphes that M = L(Cx (f)(f)). It easily

follows that O( M) is central in M.

From the definition of D, it is clear that D < O(K). So we have D < M N O(K) < O(M).
It follows that D < O(M) < O(M) < Z(M). In particular, Ly (Ck(Ep)) centralizes D. Thus
D = [D, Ly (Ck (Ep))] < O(Ca(f))-

Since f was arbitrarily chosen, it follows that D < Ag(F'). By Lemmas and we have
Ag(F) = 1. Consequently, D = 1, as wanted.

(3) O(K) < Z(K).
By [28, Proposition 11.23], we have
O(K) = (Cor)(F) : F' < Eg,m(F) = 2).
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Because of (2), it follows that O(K) centralizes Lo (Ck (Ep)). By choice of Ey, we have
K = (O(K), Ly (Ck(Ey)), Lo (Cr (Ep))™, ..., Lo (Cr (Ep))™)

for some myq,...,my € K. It follows that K = O(K)Ck(O(K)). Therefore, Cx(O(K)) has odd
index in K. We have O? (K) = K since K is a 2-component of C. It follows that K = Cx(O(K)).
Consequently, O(K) < Z(K).

(4) Conclusion.

Applying [28, Lemma 4.11], we deduce from (3) that K is a component of C. Therefore, K is
quasisimple. We have

K/Z(K) = (K/O(K))/Z(K/O(K)) = PSL;, _5(q").
Applying Lemmas and we conclude that K = SLf_,(¢*)/Z for some central subgroup Z

of SL; _4(q*). Using Proposition or using the order formulas for |SL:_,(¢*)| and |SL,—2(q)]
given by [33, Proposition 1.1 and Corollary 11.29], we see that

|SL5_o(q")|2 = [SLn-2(q)]2 = |X1| = [K|2 = |SL;,_5(q")/Z]a-
Thus Z has odd order. OJ

Proposition 7.18. We have L = SLy(q¢*) and L < Cg(t). Moreover, L is the only normal
subgroup of Cq(t) which is isomorphic to SLa(q*).

Proof. For ¢* = 3, this follows from Propositions [7.7] and

Assume now that ¢* # 3. Let K := KO(Cq(t)). By the last statement in Proposition
K = 0¥ (K). Let i € {1,2}. Since 4; is a 2-component of Ccgt)(u), we have A; = 0% (4;). Also,
A; < K, and so 4; < 0% (K) = K. It follows that A; is a 2-component of Cg (u).

By Proposition we have K = SLf ,(q¢*)/Z for some central subgroup Z of SLf ,(¢*)
with odd order. It is easy to see that if m is a non-central involution of SL: ,(¢*)/Z and J is a
2-component of its centralizer in SL;, ,(¢*)/Z, then J = SL;(q*) for some k > 2. Since u is a
non-central involution of K and A;/O(A1) = SLa(q"), it follows that A; = SLy(¢*). By definition
of L (see Proposition , L is isomorphic to Aj. So we have L = SLa(q").

Let Lg be the 2-component of Cg(t) associated to LO(C(t))/O(Ca(t)). By [37, 6.5.2], we have
[Lo, K] = 1. Hence Lo < Cg, ) (u). So Lo is a 2-component of Cc, ) (u). Clearly Ay # Lo # As.
Lemma [7.10] implies that Ly = L. From Proposition [6.§] (iii), we see that L = Ly < Cg(t).

Proposition (iii) also shows that K and L are the only 2-components of Cg(t). So L is the
only normal subgroup of C¢(t) isomorphic to SLa(q*). O

8. THE SUBGROUP (i

Let A be a subset of {1,...,n} with order 2. Then t4 is G-conjugate to ¢. Proposition
implies that Cg(t4) has a unique normal subgroup isomorphic to SLy(¢*). We denote this
subgroup by L4, and we define Gy to be the subgroup of G generated by the groups L4, where
A ={i,i+ 1} for some 1 <i < n. We are going to prove that Gy < G and that Gy is isomorphic
to a nontrivial quotient of SL: (¢*). This will complete the proof of Theorem

By Proposition K is isomorphic to a quotient of SLf_,(g*) by a central subgroup of odd
order. By the proof of Proposition A; and Ag are 2-components of Ck (u) if ¢* # 3.

Lemma 8.1. Let Z < Z(SL;,_,(q*)) with K = H := SL%_,(q*)/Z. Let Hy be the image of

((*1.)  aessse)
() aesicse)

in H and Hy the image of
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in H. Then there is a group isomorphism ¢ : K — H which maps Ay to Hy and As to Hs.

Proof. For ¢* = 3, this follows from Proposition and Lemma (iii).
Assume now that ¢* # 3. Let ¢ : K — H be a group isomorphism. For each even natural
number k with 2 < k < n — 2, let hy be the image of

(" )
Inf2fk

in H. It is easy to note that each non-central involution of H is conjugate to hj for some even
2 < k <n—2. As u is a non-central involution of K, we may assume that u¥ = t; for some even

2<k<n-—2.
A *
{( In2k> : Ae SLi(q )}

Let 1/'171 be the image of
I *
{( g A> t A€ SLy 5 4(q )}

in H. It is easy to note that the 2- components of Cy(ty) are precisely the quasisimple elements
of {Hl, Hg} Also, t;, € Hl, but t; & H2 On the other hand, A; and AQ are the 2-components of
Ck (u), and we have u € A;. This implies (4;)7 = Hy and (A3)? = Hy. Since A1 & L = SLy(q*),
we have k = 2, and hence H1 H; and Hg Hs. O

Lemma 8.2. Let 1 <i<j<mn. Set A:={i,i+ 1} and B :={j,j+ 1}. Then:
(i) Ifi+1 <y, then [La,Lp] = 1.
(ii) Suppose that j = i+ 1. Then there is a group isomorphism from (La,Lp) to SL5(q")
under which L4 corresponds to the subgroup

in H and H, be the image of

0
Mo ) ¢ mesisgn
0 01
of SL5(q*) and under which Lp corresponds to the subgroup
110 0
8 v . M e SL5(q%)

of SL5(q").
(iii) Suppose that 1 <i<n—3 and that j =i+ 1. Set k:=i+2 and C := {k,k+ 1}. Then
(La,Lp,L¢) is isomorphic to SLi(q*).

Proof. Let H, Hy, Ho and ¢ be as in Lemma For each D C {1,...,n — 2} of even order, let
hp be the image of the matrix diag(d,...,dn—2) € SL}_5(¢*) in H, where dy = —1 if £ € D and
dg=1if ¢ €{1,...,n—2}\ D. Note that u“" hii2;- Let J be the subgroup of H consisting of
all hp, where D C {1, ...,n— 2} has even order, and let E; denote the subgroup of X; consisting
of all tp, where D C {1,...,n — 2} has even order. From Lemma we see that (E7)? is
Cgr(u®)-conjugate to J. Upon replacing ¢ by a composite of ¢ and an inner automorphism of H,
we may (and will) assume that (E1)? = J.

From the definition of L (Proposition , it is easy to see that L 5y = Aj.

We now prove (i). Assume that i + 1 < j. Since Fg(G) = Fs(PSLy(q)), there is some g € G
with (t4)? = t{19) = uw and (tp)? = t34y. So it suffices to show that [Lyy 9y, Lyz4y] = 1. Let h
denote the image of ¢(3 41 under . Then h € Hj since ty3 4y € Ty < Ag. Therefore, and since h is
conjugate to u? = hy; 9y, we may choose ¢ such that h = hysz 4y (and for the rest of the proof of
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(i), we will assume that ¢ has been chosen in this way). We see from Lemma [3.3§ (ii) that there
is an a € H with (hy;2))® = hy34y and (H1)® < Ha. In particular, [Hy, (H1)?] = 1. If k is the
preimage of a under ¢, then u* = tis4y and [Aq, (A])F] = 1. We also have (A;)* = L34y and
thus [L{1:2}’L{3’4}] =1.

We now prove (ii). Assume that j =i+ 1. Since Fg(G) = Fs(PSLy(q)), there is some g € G
with (t4)? = t{10) and ()Y = t{93). Therefore, it is enough to prove (ii) under the assumption
that ¢« = 1, and we will assume that this is the case. We see from Lemmas (ii) and that
X1 N Ay = Ty, Thus trp31 ¢ Az. Let h denote the image of ¢(5 3, under ¢. Then h ¢ Hs.
Therefore, and since h is conjugate to u? = hy 9y, we may choose ¢ such that h = hyy 3 (and for

the rest of the proof of (ii), we will assume that ¢ has been chosen in this way). Let H; be the
image of
1
M : M e SL5(¢")
In—5

in H. By Lemma@ (ii), there is some a € H with (hy; 9})* = hyo 3y and (H1)* = Hy. Let k be
the preimage of a under . Then u* = ti2,3y and hence Ly 3 = (L{Lg})k = (Ap)*. We see now
that ¢ induces an isomorphism from (L 9y, L{23}) to <H1,I?1> mapping Ly o) to Hy and Ly 3}
to Hy. With this observation, it is easy to complete the proof of (ii).

We now prove (iii). Assume that 1 <i < mn —3 and that j =i+ 1. Let k and C be as in the
statement of (iii). Since Fs(G) = Fs(PSLn(q)), there is some g € G with (t4)? = t(10) = u,
(tg)? = tyo3y and (tc)? = ty34y. Therefore, it is enough to show that (L 9y, Lia 3}, L34}) 18
isomorphic to SLj(q*). Let h := (t{33))? and h o= (t{3.43)?. As in the proof of (ii), we can

choose ¢ such that h = hya3y. Also, h = hp for some D C {1,...,n — 2} of order 2. We

have t;34y € Tp < Az and hence hp = h € Hz. Therefore, D N {1,2} = (0. We claim that
Dn{2,3} = {3}. Assume not. Then DN {2,3} =0, and it is easy to find an element a € Ng(J)
with h® = hygy 9y = u¥ and (h)e = hgs4y € Haz. So there is some k € Nk (FE1) with (t{g,g})k =u
and (t(3,43)" € To. On the other hand, it is casy to sce from Fg(G) = Fs(PSLy(q)) that there is
no g € K with (t333)? = v and (t{34;)? € T2. This contradiction shows that D N {2,3} = {3}.
So we can choose ¢ such that h = hy; 3y and h= hys.4y- Now the proof of (iii) can be completed
by using similar arguments as in the proof of (ii). O

Proposition 8.3. Gy is isomorphic to a nontrivial quotient of SLS,(q*).

Proof. Assume that ¢ = 4. By Lemma the groups Ly 9},..., Ln_1,) form a weak Curtis-
Tits system in G of type SL,(¢*) (in the sense of [30, p. 9]). Applying a version of the Curtis-Tits
theorem, namely [30, Chapter 13, Theorem 1.4], we conclude that Gy is isomorphic to a quotient
of SL,(q").

Assume now that ¢ = —. Then Lemma [8:2] shows that G has a weak Phan system of rank
n — 1 over F .> (in the sense of [I4, p. 288]). If ¢* # 3, then [14, Theorem 1.2] implies that Gy
is isomorphic to a quotient of SU,(¢*). If ¢* = 3, the same follows from [I4, Theorem 1.3] and

Lemma (iii). O
Lemma 8.4. Let R be a Sylow 2-subgroup of Go. Then R € Syly(G) and Fr(Go) = Fr(G).

Proof. Since q¢ ~ eq*, we have that the 2-fusion system of PSLS(¢*) is isomorphic to the 2-
fusion system of PSL,(q) (see Proposition [3.20). Clearly, Go/Z(Go) = PSL:/(q*). So the 2-
fusion system of Gy/Z(Gy) is isomorphic to the 2-fusion system of G. It easily follows that
|Gol2 = |Go/Z(Go)|2 = |G|z, and Lemma shows that the 2-fusion system of Gy is isomorphic
to that of Go/Z(Gy) and hence to that of G. This completes the proof. O
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Lemma 8.5. The following hold.

(i) If ¢* # 3, then 0% (0%(Cx(t))) = K L.
(ii) If ¢* = 3, then O*(Cq(t)) = K L.

Proof. Set C := Cg(t).

Assume that ¢* # 3. Then KL is perfect. This implies that KL = 0% (O*(K L)) < 0% (0%*(C)).
Since TNKL = (T'NK)(T'NL)=X;Xs, Lemmas 5.4 and show that C/K L has a nilpotent
2-fusion system. So C'/K L is 2-nilpotent by [39, Theorem 1.4]. This implies O? (0*(C)) < K L.

We assume now that ¢* = 3. Then KL = O%(KL) since K is perfect and L = SLy(3).
Thus KL < O?(C). In order to prove equality, it suffices to show that C/KL is a 2-group. By
Proposition [7.7/ and Lemmal6.3] (i), C/KCc(K) is a 2-group. By [37, 6.5.2], we have L < C¢(K).
It is enough to show that Co(K)/L is a 2-group.

We have O?(Cco(K))NT < 0*(Ce(X1))NT = Xa by Lemma [5.6/ and the hyperfocal subgroup
theorem [19, Theorem 1.33]. On the other hand, Xy < L = O?(L) < O%*(C¢(K)). Consequently,
Xo = O*(Co(K))NT € Syly(0?(Co(K))). Set U := Co2(ce (k) (X2). We have Xo < C since X
is the unique Sylow 2-subgroup of L = SLs(3). So we have U < C. Hence Z(X2) = XoNU €
Syly(U). Applying [37, 7.2.2], we conclude that U is 2-nilpotent. We have O(U) =1 since U < C
and O(C) = 1 by Proposition [7.7 It follows that U = Z(X5).

Clearly, O?(C¢(K))/U is isomorphic to a subgroup of Aut(Xs). We have |0%(C¢o(K))/U|z = 4
since Qg = Xy € Syly(O?(Ce(K))) and U = Z(X3). Also, |0?(Co(K))/U| > 12 since L <
O%(Cc(K)). As Aut(X3) = Aut(Qs) = S, by [37, 5.3.3], it follows that |O?(Cc(K))/U| = 12.
This implies O?(Co(K)) = L. So Cc(K)/L is a 2-group, as required. O

Lemma 8.6. We have KL < Gy.

Proof. We have t € Xo < L = Ly,_1, < Go. Let R € Syly(Go) with ¢ € R such that (t) is fully
centralized in G := Fg(Gp). By Lemma [8.4] R € Syly(G) and G = Fg(G). Therefore, Cg(t) €
Syly(Calt)) and C((t)) = Fnw(Calt)). Also, T = Cs(t) € Syl(Ca(t)) and Cr(g({t) =
Fr(Cq(t)). So, by Lemma Cg((t)) has a component isomorphic to the 2-fusion system of
SLn—Q(Q)‘

Let Z < Z(SLg(g*)) with Gy = SLE(¢*)/Z. By the proof of Lemma 8.4, Z(Go) has odd order.

Let = be an element of SL(¢*) such that z := TZ is an involution of SL:(¢*)/Z. Set C :=
Csre (g+)/z(x). Tt is easy to note that the 2-components of C are precisely the images of the
2-components of Cgre (4+)(Z) in SL,(¢*)/Z. Using this, it is not hard to see from Lemmas3.3{and
that one of the following holds:

(1) ¢* # 3, 0% (0%*(C)) = KyLg, where Ky and Lo are subnormal subgroups of C' such that
Ko = SL;_,(¢*) and Lo = SL;(¢*) for some 1 < i < n. Moreover, the 2-components of C'
are precisely the quasisimple elements of { Kg, Lo}.

(2) ¢ = 3, O*(C) = KoLg, where Ky and Lg are subnormal subgroups of C such that
Ko = SL;_,(¢*) and Lo = SL;(¢*) for some 1 < i < n. Moreover, the 2-components of C'
are precisely the quasisimple elements of { Ky, Lo}.

(3) C has precisely one 2-component, and this 2-component is isomorphic to a nontrivial
quotient of SLn/Q((q*)2).

As seen above, Cg((t)) = Fcy)(Ca,(t)) has a component isomorphic to the 2-fusion system
of SL,_2(q). By Proposition this component is induced by a 2-component of Cg,(t). In
view of the preceding observations, we can conclude that Cg,(¢) has subgroups Ky and Lo with
Ko 2 SLE_,(q*) and Lo 2 SLo(q*) such that 0% (0%(Cg, (t))) = KoLg if ¢* # 3 and O%(Cg, (t)) =
KoLy if ¢* = 3.

Clearly, 02/(02(0@0 (1)) < 0% (0%(Cq(t))) and 0%(Cg, (1)) < O%(Cq(t)). Lemma implies
that KoLo < KL. If n is odd, then it is easy to see that |KoLg| = |Ko||Lo| > |K||L| = |KL|.
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If n is even, then one can easily see that |KoLo| = 3|Ko||Lo| > 3|K||L| = |[KL|. Consequently,
KoLy < KL and |KOL0’ > |KL| It follows that KL = KyLg < Gy. ]

Corollary 8.7. Let x be an involution of Gy which is G-conjugate to t. Let Lo be the unique
normal SLa(q*)-subgroup of Cq(x), and let Ko be the component of Cq(x) different from Ly.
Then we have KoLy < Gy.

Proof. Since t € Gy, we see from Lemma that there is some g € Go with x = t9. Clearly,
(KoLg) = (KL)%, and so KoLy < Gp by Lemma . O

Lemma 8.8. We have Ng(S) < Ng(Go).

Proof. Set M := Ng(Go). Let s € Ng(SN M), and let 1 < i < n—1. We have tf;;,1y €
SN Livy <SNGo < SN M, and hence (tg;413)° € SN M < M. Since Gg has odd index in
M by Lemma we even have (ty;;41))° € Go. Corollary implies that (L ;113)° < Go. So
we have s € M by the definition of Gy. Thus Ng(SN M) = 5N M and hence S < M. It is clear
that C(S) < M. Using Lemma [3.23] we conclude that Ng(S) = SCq(S) < M. O

Lemma 8.9. If x is an involution of S, then Cg(x) < Ng(Go).

Proof. Set M := Ng(Gy).

We begin by proving that Cg(t) < M. We have K < Gy < M by Lemma and Cg(t) =
KN )(X1) by the Frattini argument. Also, Ne, ) (X1) = TCq)(X1) as a consequence of
Lemma and T < M by Lemma So it suffices to show that Cg, ) (X1) < M.

Let z € Coy(1)(X1). In order to prove z € M, it is enough to show that (Lg; ;413)* < Go for all
1<i<n Ifl1<i<mnandi#n-—2,wehave z € Cg(ty;41)) and hence (Ly;i11y)* = Ly i1y <
Go. It remains to show that (Ly,_2,-13)* < Go. Since Fs(G) = Fs(PSLy(q)), there is some
g € G with 9 = u, w9 =t and (t{23})? = t{n_2,n—1}- From the definition of L (Proposition
, it is easy to see that L9y = A1 < K. Since u = f1 9} and (53 are K-conjugate, we
thus have L{Q’g} <K<K LQI(CG(t)). Hence L{n—Q,n—l} = (L{Q’g})g < Lzl(CG(t))g = LQ/(CG(U)).
Since z centralizes u, it follows that (L{,—9,-1})° < Lo(Cg(u)). From Corollary we see
that Lo/ (Ca(u)) < Go. So we have (Ly,_2,-13)* < Go, and it follows that Ce,)(X1) < M.
Consequently, Cq(t) < M.

Since Gg has odd index in M by Lemma we see from Lemma that S < Gy. Also,
Fs(Go) = Fs(G) by Lemma 8.4 As Cq(t) < M, it follows that Cg(z) < M for any involution z
of S which is G-conjugate to t.

Assume now that z is an involution of S which is G-conjugate to t¢; for some even natural
number ¢ with 4 <4 < n such that ¢ < % if n is even. We are going to show that Cg(z) < M.
Arguing by induction over ¢ and using the preceding observations, we may assume that for each
even 2 < j < ¢ and each involution y of S which is G-conjugate to t;, we have Cg(y) < M.
Furthermore, we may assume that (z) is fully Fs(G)-centralized since Fg(G) = Fs(Go).

As a consequence of Lemma Cg(7) is generated by the normalizers Ne, () (U), where U
is a subgroup of Cg(x) containing a G-conjugate of ¢; for some even 2 < j < i. We show that
each such normalizer is contained in M. Thus let U be a subgroup of Cg(z) and let y be an
element of U which is G-conjugate to t; for some even 2 < j <. Also, let g € N¢,(2)(U). Then
Yy € U < Cg(z) < S. Since Fg(Gp) = Fs(G), we have that y and y9 are Go-conjugate. Hence,
there is some m € Gy with y9 = y™. We have mg~! € Cg(y) < M. This implies g € M since
m € Go < M. So we have N¢,(;)(U) < M and hence Cg(z) < M.

Assume now that z is an arbitrary involution of S. We are going to prove that Cg(z) < M.
Since Fg(G) = Fs(Gp), we may assume that (x) is fully Fg(G)-centralized. By Corollary
Cg(z) is 3-generated. Therefore, C(x) is generated by the normalizers Ng,,(,)(U), where U <
Cs(z) and m(U) > 3. Take some U < Cg(z) with m(U) > 3. By Lemma[2.3| any Es-subgroup of
S has an involution which is the image of an involution of SL,,(q). It follows that U has an element
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y which is G-conjugate to tj for some even 2 < k < n. By the preceding observations, Cg(y) < M.
Arguing as above, we can conclude that Ng,(,)(U) < M. It follows that Cg(x) < M. O

Proposition 8.10. We have Gy < G.

Proof. Suppose that M := Ng(Gp) is a proper subgroup of G. By [28, Proposition 17.11], we
may deduce from Lemmas and that M is strongly embedded in G. Therefore, by [49]
Chapter 6, 4.4], G has only one conjugacy class of involutions. On the other hand, we see from
Proposition 3.5 that G has at least two conjugacy classes of involutions. This contradiction shows
that M = G. Hence Gy < G. O

With Propositions 8.3 and we have completed the proof of Theorem

9. PROOFS OF THE MAIN RESULTS

Proof of Theorem [A] By Section ] Theorem [A]is true for n <5.

Suppose now that n > 6. Let ¢ be a nontrivial odd prime power, and let G be a finite simple
group satisfying .

Recall that a natural number k£ > 6 is said to satisfy P(k) if whenever qo is a nontrivial odd
prime power and H is a finite simple group satisfying and realizing the 2-fusion system of
PSLi(qo), we have H = PSL;(q*) for some nontrivial odd prime power ¢* and some € € {+, —}
with e¢* ~ go. Theorem shows that P(k) is satisfied for all natural numbers k > 6.

Therefore, if the 2-fusion system of G is isomorphic to the 2-fusion system of PSL,(q), then
condition (i) of Theorem [A|is satisfied.

Conversely, if one of the conditions (i), (ii), (iii) of Theorem |Alis satisfied, then this can only
be condition (i), and Proposition implies that the 2-fusion system of G is isomorphic to the
2-fusion system of PSL,(q). O

Proof of Theorem[B. Let ¢ be a nontrivial odd prime power and let n > 2 be a natural number,
where ¢ =1 or 7 mod 8 if n = 2. Let G be a finite simple group and S € Syly,(G). Suppose that
Fs(G) has a normal subsystem £ on a subgroup 7" of S such that £ is isomorphic to the 2-fusion
system of PSL,(q) and such that Cs(€) = 1. We have to show that Fg(G) is isomorphic to the
2-fusion system of PSL,(q).

By Lemma PSL,(q) is not a Goldschmidt group. Applying [10, Theorem 5.6.18], we
conclude that & is simple. We see from [16, Theorem B] that £ is tamely realized by some finite
simple group of Lie type K.

By Theorem we have K = PSL:(q*) for some nontrivial odd prime power ¢* and some
e € {+,—} with e¢* ~ ¢.

By Propositions and we have that Out(K) is 2-nilpotent. Now Proposition m
implies that Fg(G) is tamely realized by a subgroup L of Aut(K) containing Inn(K’) such that
the index of Inn(K) in L is odd. By Lemma the 2-fusion system of L is isomorphic to the
2-fusion system of Inn(K) = K and hence isomorphic to the 2-fusion system of PSL,(q). So
Fs(@G) is isomorphic to the 2-fusion system of PSL,(q). O

Proof of Corollary[C Let ¢ be a nontrivial odd prime power and let n > 2 be a natural number,
where g =1 or 7 mod 8 if n = 2. Let GG be a finite simple group and let S be a Sylow 2-subgroup
of G. Suppose that F*(Fgs(G)) is isomorphic to the 2-fusion system of PSL,(q).

We have F*(Fs(G)) < Fs(G) and Cs(F*(Fs(G))) = Z(F*(Fs(G))) = 1. So Theorem
implies that Fs(G) is isomorphic to the 2-fusion system of PSL,(q). O
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