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Abstract. Let q be a nontrivial odd prime power, and let n ≥ 2 be a natural number with
(n, q) 6= (2, 3). We characterize the groups PSLn(q) and PSUn(q) by their 2-fusion systems. This
contributes to a programme of Aschbacher aiming at a simplified proof of the classification of
finite simple groups.

1. Introduction

The classification of finite simple groups (CFSG) is one of the greatest achievements in the
history of mathematics. Its proof required around 15,000 pages and spreads out over many
hundred articles in various journals. Many mathematicians from all over the world were involved
in the proof, whose final steps were published in 2004 by Aschbacher and Smith, after it was
prematurely announced as finished already in 1983. Because of its extreme length, a simplified
and shortened proof of the CFSG would be very valuable. There are three programmes working
towards this goal: the Gorenstein-Lyons-Solomon programme (see [27]), the Meierfrankenfeld-
Stellmacher-Stroth programme (see [43]) and Aschbacher’s programme.

The goal of Aschbacher’s programme is to obtain a new proof of the CFSG by using fusion
systems. The standard examples of fusion systems are the fusion categories of finite groups over
p-subgroups (p a prime). If G is a finite group and S is a p-subgroup of G for some prime p,
then the fusion category of G over S is defined to be the category FS(G) given as follows: the
objects of FS(G) are precisely the subgroups of S, the morphisms in FS(G) are precisely the group
homomorphisms between subgroups of S induced by conjugation in G, and the composition of
morphisms in FS(G) is the usual composition of group homomorphisms. Abstract fusion systems
are a generalization of this concept. A fusion system over a finite p-group S, where p is a prime, is a
category whose objects are the subgroups of S and whose morphisms behave as if they are induced
by conjugation inside a finite group containing S as a p-subgroup. For the precise definition, we
refer to [11, Part I, Definition 2.1]. A fusion system is called saturated if it satisfies certain axioms
motivated by properties of fusion categories of finite groups over Sylow subgroups (see [11, Part
I, Definition 2.2]). If G is a finite group and S1, S2 ∈ Sylp(G) for some prime p, then FS1(G) and
FS2(G) are easily seen to be isomorphic (in the sense of [12, p. 560]). Given a finite group G, a
prime p and a Sylow p-subgroup S of G, we refer to FS(G) as the p-fusion system of G.

Originally considered by the representation theorist Puig, fusion systems have become an object
of active research in finite group theory, representation theory and algebraic topology. It has
always been a problem of great interest in the theory of fusion systems to translate group-theoretic
concepts into suitable concepts for fusion systems. For example, there is a notion of normalizers
and centralizers of p-subgroups in fusion systems, a notion of the center of a fusion system, a
notion of factor systems, a notion of normal subsystems of saturated fusion systems and a notion
of simple saturated fusion systems (see [11, Parts I and II]). Roughly speaking, Aschbacher’s
programme consists of the following two steps.
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1. Classify the simple saturated fusion systems on finite 2-groups. Use the original proof of
the CFSG as a “template”.

2. Use the first step to give a new and simplified proof of the CFSG.

There is the hope that several steps of the original proof of the CFSG become easier when
working with fusion systems. For example, in the original proof of the CFSG, the study of
centralizers of involutions plays an important role. The 2′-cores of the involution centralizers, i.e.
their largest normal odd order subgroups, cause serious difficulties and are obstructions to many
arguments. Such difficulties are not present in fusion systems since cores do not exist in fusion
systems. This is suggested by the well-known fact that the 2-fusion system of a finite group G
is isomorphic to the 2-fusion system of G/O(G), where O(G) denotes the 2′-core of G. For an
outline of and recent progress on Aschbacher’s programme, we refer to [8].

So far, Aschbacher’s programme has focused mainly on Step 1, while not much has been done
on Step 2. An important part of Step 2 is to identify finite simple groups from their 2-fusion
systems. The present paper contributes to Step 2 of Aschbacher’s programme by characterizing
the finite simple groups PSLn(q) and PSUn(q) in terms of their 2-fusion systems, where n ≥ 2
and where q is a nontrivial odd prime power with (n, q) 6= (2, 3).

In order to state our results, we introduce some notation and recall some definitions. Let
G be a finite group. A component of G is a quasisimple subnormal subgroup of G, and a 2-
component of G is a perfect subnormal subgroup L of G such that L/O(L) is quasisimple. The
natural homomorphism G→ G/O(G) induces a one-to-one correspondence between the set of 2-
components of G and the set of components of G/O(G) (see [28, Proposition 4.7]). We use Z∗(G)
to denote the full preimage of the center Z(G/O(G)) in G. In Step 2 of Aschbacher’s programme,
one may assume that a finite group G is a minimal counterexample to the CFSG. Such a group
G has the following property.

Whenever x ∈ G is an involution and J is a 2-component of CG(x), (CK)

then J/Z∗(J) is a known finite simple group.

By a known finite simple group, we mean a finite simple group appearing in the statement of
the CFSG.

For each integer n 6= 0, we use n2 to denote the 2-part of n, i.e. the largest power of 2 dividing
n. Given odd integers a, b with |a|, |b| > 1, we write a ∼ b provided that (a− 1)2 = (b− 1)2 and
(a + 1)2 = (b + 1)2. If q is a nontrivial prime power and if n is a positive integer, then we write
PSL+

n (q) for PSLn(q) and PSL−n (q) for PSUn(q). With this notation, we can now state our main
results.

Theorem A. Let q be a nontrivial odd prime power, and let n ≥ 2 be a natural number. Let G
be a finite simple group. Suppose that G satisfies (CK) if n ≥ 6. Then the 2-fusion system of G
is isomorphic to the 2-fusion system of PSLn(q) if and only if one of the following holds:

(i) G ∼= PSLεn(q∗) for some nontrivial odd prime power q∗ and some ε ∈ {+,−} with εq∗ ∼ q;
(ii) n = 2, |PSL2(q)|2 = 8, and G ∼= A7;

(iii) n = 3, (q + 1)2 = 4, and G ∼= M11.

Our second main result is an extension of Theorem A. In order to state it, we briefly mention
some concepts from the local theory of fusion systems. Let F be a saturated fusion system on
a finite p-group S for some prime p, and let E be a normal subsystem of F . In [7, Chapter 6],
Aschbacher introduced a subgroup CS(E) of S, which plays the role of the centralizer of E in
S. In [7, Chapter 9], he defined a normal subsystem F ∗(F) of F , called the generalized Fitting
subsystem of F , and proved that CS(F ∗(F)) = Z(F ∗(F)), where the latter denotes the center of
F ∗(F).
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Theorem B. Let q be a nontrivial odd prime power, and let n ≥ 2 be a natural number. If
n = 2, suppose that q ≡ 1 or 7 mod 8. Let G be a finite simple group, and let S be a Sylow
2-subgroup of G. Suppose that FS(G) has a normal subsystem E on a subgroup T of S such that
E is isomorphic to the 2-fusion system of PSLn(q) and such that CS(E) = 1. Then FS(G) is
isomorphic to the 2-fusion system of PSLn(q). In particular, if n ≤ 5 or if G satisfies (CK), then
one of the properties (i)-(iii) from Theorem A holds.

Corollary C. Let q be a nontrivial odd prime power, and let n ≥ 2 be a natural number. If n = 2,
suppose that q ≡ 1 or 7 mod 8. Let G be a finite simple group, and let S be a Sylow 2-subgroup
of G. Suppose that F ∗(FS(G)) is isomorphic to the 2-fusion system of PSLn(q). Then FS(G) is
isomorphic to the 2-fusion system of PSLn(q). In particular, if n ≤ 5 or if G satisfies (CK), then
one of the properties (i)-(iii) from Theorem A holds.

The paper is organized as follows. In Sections 2 and 3, we collect several results needed for
the proofs of our main results. Preliminary results on abstract finite groups and abstract fusion
systems are proved in Section 2. Section 3 presents some results on linear and unitary groups over
finite fields, mainly focussing on 2-local properties and on the automorphisms of these groups.

In Section 4, we will verify Theorem A for the case n ≤ 5. Our proofs strongly depend on work
of Gorenstein and Walter [31] (for n = 2), on work of Alperin, Brauer and Gorenstein [2], [3] (for
n = 3) and on work of Mason [40], [41], [42] (for n = 4 and n = 5).

For n ≥ 6, we will prove Theorem A by induction over n. In order to do so, we will consider a
finite group G realizing the 2-fusion system of PSLn(q), where q is a nontrivial odd prime power
and where n ≥ 6 is a natural number such that Theorem A is true with m instead of n for any
natural number m with 6 ≤ m < n. We will also assume that O(G) = 1 and that G satisfies (CK).
To prove that Theorem A is satisfied for the natural number n, we will prove the existence of a
normal subgroup G0 of G such that G0 is isomorphic to a nontrivial quotient of SLεn(q∗) for some
nontrivial odd prime power q∗ and some ε ∈ {+,−} with εq∗ ∼ q. This will happen in Sections
5-8.

In Section 5, we will introduce some notation and prove some preliminary lemmas. Section
6 describes the 2-components of the centralizers of involutions of G. In Section 7, we will use
signalizer functor methods to describe the components of the centralizers of certain involutions of
G. This will be used in Section 8 to construct the subgroup G0 of G. One of the main tools here
will be a version of the Curtis-Tits theorem [30, Chapter 13, Theorem 1.4] and a related theorem
of Phan reproved by Bennett and Shpectorov in [14].

Finally, in Section 9, we will give a full proof of Theorem A (basically summarizing Sections
4-8), and we will prove Theorem B and Corollary C.

Notation and Terminology. Our notation and terminology are fairly standard. The reader
is referred to [24], [28], [37] for unfamiliar definitions on groups and to [11], [19] for unfamiliar
definitions on fusion systems.

However, we shall now explain some particularly important notation and definitions (before
stating our main results, we already introduced some other important definitions).

Given a map α : A → B and an element or a subset X of A, we write Xα for the image
of X under α. Also, if C ⊆ A and D ⊆ B such that Cα ⊆ D, we use α|C,D to denote the
map C → D, c 7→ cα. Given two maps α : A → B and β : B → C, we write αβ for the map
A→ C, a 7→ (aα)β.

Sometimes, we will interprete the symbols + and − as the integers 1 and −1, respectively. For
example, if n is an integer and if ε is assumed to be an element of {+,−}, then n ≡ ε mod 4
shall express that n ≡ 1 mod 4 if ε = + and that n ≡ −1 mod 4 if ε = −.

Let G be a finite group. We write G# for the set of non-identity elements of G. Given an element
g of G and an element or a subset X of G, we write Xg for g−1Xg. The inner automorphism
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G → G, x 7→ xg is denoted by cg. For subgroups Q and H of G, we write AutH(Q) for the
subgroup of Aut(Q) consisting of all automorphisms of Q of the form ch|Q,Q, where h ∈ NH(Q).

We write L(G) for the subgroup of G generated by the components of G and L2′(G) for the
subgroup of G generated by the 2-components of G. We say that G is core-free if O(G) = 1. If G
is core-free and if L is a subnormal subgroup of G, then L is said to be a solvable 2-component of
G if L ∼= SL2(3) or PSL2(3).

Let n be a natural number. Then we use E2n to denote an elementary abelian 2-group of order
2n, and we say that n is the rank of E2n . The maximal rank of an elementary abelian 2-subgroup
of a finite 2-group S is said to be the rank of S. It is denoted by m(S).

Now let p be a prime, and let F be a fusion system on a finite p-group S. Then S is said to
be the Sylow group of F , and F is said to be nilpotent if F = FS(S). Given a fusion system
F1 on a finite p-group S1, we say that F and F1 are isomorphic if there is a group isomorphism
ϕ : S → S1 such that

HomF1(Qϕ, Rϕ) = {(ϕ−1|Qϕ,Q)ψ(ϕ|R,Rϕ) | ψ ∈ HomF (Q,R)}

for all Q,R ≤ S. In this case, we say that ϕ induces an isomorphism from F to F1. Let Q be a
normal subgroup of S. If P and R are subgroups of S containing Q and if α : P → R is a morphism
in F such that Qα = Q, we write α/Q for the group homomorphism P/Q→ R/Q induced by α.
The fusion system F/Q on S/Q with HomF/Q(P/Q,R/Q) = {α/Q | α ∈ HomF (P,R), Qα = Q}
for all P,R ≤ S containing Q is said to be the factor system of F modulo Q.

Suppose now that F is saturated. We write foc(F) for the focal subgroup of F and hnp(F) for
the hyperfocal subgroup of F . We say that F is quasisimple if F/Z(F) is simple and foc(F) = S.
A component of F is a subnormal quasisimple subsystem of F . Given a normal subsystem E of S
and a subgroup R of S, we write ER for the product of E and R, as defined in [7, Chapter 8].

2. Preliminaries on finite groups and fusion systems

In this section, we present some general results on finite groups and fusion systems.

2.1. Preliminaries on finite groups.

Lemma 2.1. ([37, 3.2.8]) Let G be a finite group, and let N be a normal p′-subgroup of G for

some prime p. Set G := G/N . If R is a p-subgroup of G, then we have NG(R) = NG(R) and

CG(R) = CG(R).

Corollary 2.2. Let G be a finite group, and let N be a normal p′-subgroup of G for some prime
p. Set G := G/N . If x ∈ G has order p, then we have CG(x) = CG(x).

Lemma 2.3. Let G be a finite group, and let Z be a cyclic central subgroup of G. Then each
E8-subgroup of G/Z has an involution which is the image of an involution of G.

Proof. Let Z ≤ E ≤ G such that E/Z ∼= E8. Let R be a Sylow 2-subgroup of E. Then
E = RZ. It suffices to show that R has an involution not lying in R ∩ Z. Assume that any
involution of R is an element of R ∩ Z. Then R has a unique involution since Z is cyclic.
We have R/(R ∩ Z) ∼= RZ/Z = E/Z ∼= E8, and so R is not cyclic. Applying [37, 5.3.7], we
conclude that R is generalized quaternion. In particular, Z(R) has order 2, and so we have
R ∩ Z = Z(R). Since R is a generalized quaternion group, R/Z(R) is dihedral. In particular,
E/Z ∼= R/(R ∩ Z) = R/Z(R) 6∼= E8. This contradiction shows that R has an involution not lying
in R ∩ Z, as required. �

The following proposition is well-known. We include a proof since we could not find a reference
in which it appears in the form given here.



A CHARACTERIZATION OF THE GROUPS PSLn(q) AND PSUn(q) BY THEIR 2-FUSION SYSTEMS, q ODD 5

Proposition 2.4. Let G be a finite group, and let N be a normal subgroup of G with odd order.
If L is a 2-component of G, then LN/N is a 2-component of G/N . The map from the set of 2-
components of G to the set of 2-components of G/N sending each 2-component L of G to LN/N

is a bijection. Moreover, if N ≤ K ≤ G and K/N is a 2-component of G/N , then O2′(K) is the
associated 2-component of G.

Proof. Let L be a 2-component of G. Hence, L is a perfect subnormal subgroup of G such
that L/O(L) is quasisimple. Clearly, LN/N is perfect and subnormal in G/N . Also, we have
(LN/N)/O(LN/N) ∼= L/O(L), and so (LN/N)/O(LN/N) is quasisimple. It follows that LN/N
is a 2-component of G/N .

Let N ≤ K ≤ G such that K/N is a 2-component of G/N . In order to prove the second
statement of the proposition, it is enough to show that there is precisely one 2-component L of G
such that LN/N = K/N .

Since K/N is subnormal in G/N , we have that K is subnormal in G. Therefore, L := O2′(K) is

subnormal in G. Since O2′(K/N) = K/N , we have that K/N = LN/N . Clearly, O2′(L) = L. We
have L/O(L) ∼= (LN/N)/O(LN/N) = (K/N)/O(K/N), and so L/O(L) is quasisimple. Applying
[28, Lemma 4.8], we conclude that L is a 2-component of G.

Now let L0 be a 2-component of G such that K/N = L0N/N . Then K = L0N . In particular,
L0 is a subgroup of K with odd index in K. Since L0 is subnormal in G, we have that L0 is
subnormal in K. Applying [13, Lemma 1.1.11], we conclude that L0 = O2′(L0) = O2′(K) = L.
The proof of the second statement of the proposition is now complete. The third statement also
follows from the above arguments. �

Lemma 2.5. Let G be a finite group, and let n be a positive integer. Assume that L1, . . . , Ln are
the distinct 2-components of G, and assume that Li E G for all 1 ≤ i ≤ n. Let x be a 2-element of
G, and let L be a 2-component of CG(x). Then L is a 2-component of CLi(x) for some 1 ≤ i ≤ n.

Proof. By [32, Corollary 3.2], we have L2′(CG(x)) = L2′(CL2′ (G)(x)), and by [32, Lemma 2.18

(iii)], we have L2′(CL2′ (G)(x)) =
∏n
i=1 L2′(CLi(x)). Using basic properties of 2-components, as

presented in [28, Proposition 4.7], it is not hard to deduce that L is a 2-component of CLi(x) for
some 1 ≤ i ≤ n. �

The concepts introduced by the following two definitions will play a crucial role in the proof of
Theorem A (see [32] for a detailed study of these concepts).

Definition 2.6. Let G be a finite group, k be a positive integer and A be an elementary abelian
2-subgroup of G.

(i) For each nontrivial elementary abelian 2-subgroup E of G, we define

∆G(E) :=
⋂

a∈E#

O(CG(a)).

(ii) We say that G is k-balanced with respect to A if whenever E is a subgroup of A of rank k
and a is a non-trivial element of A, we have

∆G(E) ∩ CG(a) ≤ O(CG(a)).

(iii) We say that G is k-balanced if whenever E is an elementary abelian 2-subgroup of G of
rank k and a is an involution of G centralizing E, we have

∆G(E) ∩ CG(a) ≤ O(CG(a)).

(iv) By saying that G is balanced (respectively, balanced with respect to A), we mean that G is
1-balanced (respectively, 1-balanced with respect to A).
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Definition 2.7. Let G be a finite quasisimple group, and let k be a positive integer. Then G is
said to be locally k-balanced if whenever H is a subgroup of Aut(G) containing Inn(G), we have

∆H(E) = 1

for any elementary abelian 2-subgroup E of H of rank k. We say that G is locally balanced if G
is locally 1-balanced.

We need the following proposition for the proof of Theorem A. It includes [32, Theorem 6.10] and
some additional statements, which should be also known. We include a proof for the convenience
of the reader.

Proposition 2.8. Let k be a positive integer, and let G be a finite group. For each elementary
abelian 2-subgroup A of G of rank at least k + 1, let

WA := 〈∆G(E) | E ≤ A,m(E) = k〉.
Then, for any elementary abelian 2-subgroup A of G of rank at least k + 1, the following hold:

(i) (WA)g = WAg for all g ∈ G.
(ii) Suppose that A has rank at least k + 2 and that G is k-balanced with respect to A. Then

WA has odd order. Moreover, if A0 is a subgroup of A of rank at least k+ 1, then we have
WA = WA0 and NG(A0) ≤ NG(WA).

In order to prove Proposition 2.8, we need the following theorem.

Theorem 2.9. ([32, Theorem 6.9]) Let k be a positive integer, G be a finite group and A be an
elementary abelian 2-subgroup of G of rank at least k + 2. Suppose that G is k-balanced with
respect to A. Then we obtain an A-signalizer functor on G (in the sense of [25, Definition 4.37])
by defining

θ(CG(a)) := 〈∆G(E) ∩ CG(a) : E ≤ A,m(E) = k〉
for each a ∈ A#.

We also need the following lemma.

Lemma 2.10. Let the notation be as in Theorem 2.9. Suppose that A0 is subgroup of A of rank
k + 1. Then we have

θ(G,A) := 〈θ(CG(a)) | a ∈ A#〉 = 〈∆G(E) | E ≤ A0,m(E) = k〉 =: WA0 .

Proof. To prove this, we follow arguments found on pp. 40-41 of [40].
Since θ is an A-signalizer functor on G, θ(CG(a)) is A-invariant and in particular A0-invariant

for each a ∈ A#. Consequently, θ(G,A) is A0-invariant. By the Solvable Signalizer Functor
Theorem [37, 11.3.2], θ is complete (in the sense of [25, Definition 4.37]). In particular, θ(G,A)
has odd order. Applying [28, Proposition 11.23], we conclude that

θ(G,A) = 〈Cθ(G,A)(E) | E ≤ A0,m(E) = k〉.

Since θ is complete, we have Cθ(G,A)(a) = θ(CG(a)) for each a ∈ A#. By definition of θ and since

G is k-balanced with respect to A, we have θ(CG(a)) ≤ O(CG(a)) for each a ∈ A#. So, if E is a
subgroup of A0 of rank k, then

Cθ(G,A)(E) =
⋂

a∈E#

Cθ(G,A)(a) =
⋂

a∈E#

θ(CG(a)) ≤
⋂

a∈E#

O(CG(a)) = ∆G(E).

It follows that θ(G,A) ≤WA0 .
Let E ≤ A0 with m(E) = k. Clearly, ∆G(E) is A-invariant. As a consequence of [28, Proposi-

tion 11.23], we have

∆G(E) = 〈∆G(E) ∩ CG(a) | a ∈ A#〉.
By definition of θ, we have ∆G(E)∩CG(a) ≤ θ(CG(a)) for each a ∈ A#. It follows that ∆G(E) ≤
θ(G,A). Consequently, WA0 ≤ θ(G,A). �
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Proof of Proposition 2.8. It is straightforward to verify (i).
To verify (ii), let A be an elementary abelian 2-subgroup of G of rank at least k + 2 such that

G is k-balanced with respect to A. Let θ be the A-signalizer functor on G given by Theorem 2.9,
and let θ(G,A) := 〈θ(CG(a)) | a ∈ A#〉. As a consequence of Lemma 2.10, we have θ(G,A) = WA.
By the proof of Lemma 2.10, WA = θ(G,A) has odd order.

Now let A0 be a subgroup of A of rank at least k+ 1. By Lemma 2.10, WA = θ(G,A) ≤WA0 ≤
WA, and so WA = WA0 . Finally, if g ∈ NG(A0), then (WA)g = (WA0)g = W(A0)g = WA0 = WA,
and hence NG(A0) ≤ NG(WA). �

2.2. Preliminaries on fusion systems.

Lemma 2.11. Let p be a prime, G be a finite group, N be a normal subgroup of G and S ∈
Sylp(G). Then the canonical group isomorphism S/(S ∩ N) → SN/N induces an isomorphism
from FS(G)/(S ∩N) to FSN/N (G/N).

Proof. Let ϕ denote the canonical group isomorphism S/(S ∩N)→ SN/N . Let P and Q be two

subgroups of S such that S∩N is contained in both P and Q. Set P̃ := P/(S∩N), Q̃ := Q/(S∩N),

P := PN/N and Q := QN/N . Moreover, define F̃ := FS(G)/(S ∩N) and F := FSN/N (G/N). It
is enough to show that

HomF (P ,Q) = {(ϕ−1|
P ,P̃

)α(ϕ|
Q̃,Q

) | α ∈ HomF̃ (P̃ , Q̃)}.

Let α ∈ HomF̃ (P̃ , Q̃). Then there exists g ∈ G with P g ≤ Q and α = (cg|P,Q)/(S ∩ N). By a

direct calculation, (ϕ−1|
P ,P̃

)α(ϕ|
Q̃,Q

) = cgN |P ,Q ∈ HomF (P ,Q).

Now let α ∈ HomF (P ,Q). Then there exists g ∈ G with P
gN ≤ Q and α = cgN |P ,Q. Clearly,

P g ≤ QN . Since S∩N ≤ Q, we have thatQ is a Sylow p-subgroup ofQN . Since P g is a p-subgroup
of QN , it follows that there exists an element n ∈ N with P gn ≤ Q. Set α := (cgn|P,Q)/(S ∩N).
Then a direct calculation shows that α = (ϕ−1|

P ,P̃
)α(ϕ|

Q̃,Q
). �

Corollary 2.12. ([11, Part II, Exercise 2.1]) Let p be a prime, G be a finite group and S ∈ Sylp(G).

Then the canonical group isomorphism S → S := SOp′(G)/Op′(G) induces an isomorphism from
FS(G) to FS(G/Op′(G)).

Lemma 2.13. Let K1 and K2 be two quasisimple finite groups. If the 2-fusion systems of K1 and
K2 are isomorphic, then the 2-fusion systems of K1/Z(K1) and K2/Z(K2) are isomorphic.

Proof. Suppose that the 2-fusion systems of K1 and K2 are isomorphic. Let Si be a Sylow 2-
subgroup of Ki and Fi := FSi(Ki) for i ∈ {1, 2}. As a consequence of [23, Corollary 1], we have
Z(Fi) = Si ∩ Z∗(Ki) for i ∈ {1, 2}. Since K1 and K2 are quasisimple, we have Z∗(Ki) = Z(Ki)
and hence Z(Fi) = Si ∩ Z(Ki) for i ∈ {1, 2}. Since F1

∼= F2, it follows that

F1/(S1 ∩ Z(K1)) = F1/Z(F1) ∼= F2/Z(F2) = F2/(S2 ∩ Z(K2)).

Applying Lemma 2.11, we may conclude that the 2-fusion system of K1/Z(K1) is isomorphic to
the 2-fusion system of K2/Z(K2). �

Lemma 2.14. Let S be a finite 2-group, and let A and B be normal subgroups of S such that
S is the internal direct product of A and B. Suppose that A ∼= Q8. Let F be a (not necessarily
saturated) fusion system on S. Assume that A and B are strongly F-closed and that there is an
automorphism α ∈ AutF (S) such that α|A,A has order 3, while α|B,B = idB. Then each strongly
F-closed subgroup of S contains or centralizes A.

Proof. Let C be a strongly F-closed subgroup of S not containing A. Our task is to show that C
centralizes A.

Since A and C are strongly F-closed, we have that A∩C is strongly F-closed. In particular, α
normalizes A ∩ C. It is easy to see that an automorphism of Q8 with order 3 does not normalize
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any maximal subgroup of Q8. So, as α|A,A has order 3 and normalizes A∩C, we have that A∩C
has order 1 or 2.

By [37, 8.2.7], we have
[C, 〈α〉] = [[C, 〈α〉], 〈α〉].

We claim that [C, 〈α〉] ≤ A ∩ C. Let c ∈ C and β ∈ 〈α〉. Let a ∈ A and b ∈ B such that c = ab.
Since A and B commute and since β normalizes A and centralizes B, we have

[c, β] = c−1cβ = b−1a−1aβbβ = a−1aβ ∈ A ∩ C.
Thus [C, 〈α〉] ≤ A ∩ C, as asserted.

Since A ∩ C has order 1 or 2, we have [A ∩ C, 〈α〉] = 1. So it follows that

[C, 〈α〉] = [[C, 〈α〉], 〈α〉] ≤ [A ∩ C, 〈α〉] = 1.

Now we prove that C centralizes A. Let c ∈ C and a ∈ A, b ∈ B with c = ab. We have
c−1cα ∈ [C, 〈α〉] = 1, whence cα = c. Thus ab = (ab)α = aαb and hence a = aα. As remarked
above, α does not normalize any maximal subgroup of A. So a cannot have order 4. By the
structure of A ∼= Q8, it follows that a ∈ Z(A). This implies that c = ab centralizes A. �

We need the following definition in order to state the next proposition.

Definition 2.15. A nonabelian finite simple group G is said to be a Goldschmidt group provided
that one of the following holds:

(1) G has an abelian Sylow 2-subgroup.
(2) G is isomorphic to a finite simple group of Lie type in characteristic 2 of Lie rank 1.

Proposition 2.16. Let G be a finite group, and let S be a Sylow 2-subgroup of G. Assume that
for each 2-component L of G, the factor group L/Z∗(L) is a known finite simple group. Let L2′

denote the set of 2-components L of G such that L/Z∗(L) is not a Goldschmidt group. Then the
following hold:

(i) Let L be a 2-component of G. Then FS∩L(L) is a component of FS(G) if and only if
L ∈ L2′.

(ii) The map from L2′ to the set of components of FS(G) sending each element L of L2′ to
FS∩L(L) is a bijection.

Proof. Let L be a 2-component of G. Set G := FS∩L(L). Since L is subnormal in G, we have
that G is subnormal in FS(G) (see [11, Part I, Proposition 6.2]). Therefore, G is a component of
FS(G) if and only if G is quasisimple. We have foc(G) = S ∩ L′ = S ∩ L by the focal subgroup
theorem [24, Chapter 7, Theorem 3.4], and so G is quasisimple if and only if G/Z(G) is simple. As
a consequence of [23, Corollary 1], we have Z(G) = S ∩ Z∗(L). Lemma 2.11 implies that G/Z(G)
is isomorphic to the 2-fusion system of L/Z∗(L). By [10, Theorem 5.6.18], the 2-fusion system of
L/Z∗(L) is simple if and only if L ∈ L2′ . So G is a component of FS(G) if and only if L ∈ L2′ ,
and (i) holds.

(ii) follows from [9, (1.8)]. �

Lemma 2.17. Let G be a finite group with O(G) = 1, and let S be a Sylow 2-subgroup of G.
Let n ≥ 1 be a natural number, and let L1, . . . , Ln be pairwise distinct subgroups of G such
that Li is either a component or a solvable 2-component of G for each 1 ≤ i ≤ n. Set Q :=
(S ∩ L1) · · · (S ∩ Ln). Assume that Q E S and that FS(G)/Q is nilpotent. Then, if L0 is a
component or a solvable 2-component of G, we have L0 = Li for some 1 ≤ i ≤ n.

Proof. Let Ls(G) denote the subgroup of G generated by the components and the solvable 2-
components of G. By [37, 6.5.2] and [28, Proposition 13.5], Ls(G) is the central product of the
subgroups of G which are components or solvable 2-components. Set L := L1 · · ·Ln E Ls(G).

Let G := FS∩Ls(G)(L
s(G)). Clearly, S ∩ L = (S ∩ L1) · · · (S ∩ Ln) = Q. Lemma 2.11 implies

that the 2-fusion system of Ls(G)/L is isomorphic to G/Q. By hypothesis, FS(G)/Q is nilpotent,
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and so G/Q is nilpotent. So the 2-fusion system of Ls(G)/L is nilpotent. Applying [39, Theorem
1.4], we conclude that Ls(G)/L is 2-nilpotent.

Now let L0 be a component or a solvable 2-component of G. If L0 ≤ L, then we have L0 = Li
for some 1 ≤ i ≤ n since otherwise L0 ≤ Z(L), which is impossible. So it suffices to show that
L0 ≤ L.

If L0 is a component of G, then L0/(L0∩L) is both perfect and 2-nilpotent, which implies that
L0 ≤ L, as needed.

Suppose now that L0 is a solvable 2-component of G. Assume that L0 6≤ L. Then L0 ∩ L ≤
Z(L0). Since L0 is a solvable 2-component of G, it follows that L0/(L0 ∩ L) is isomorphic to
SL2(3) or PSL2(3). On the other hand, L0/(L0 ∩ L) is 2-nilpotent. This contradiction shows
that L0 ≤ L, as required. � �

Corollary 2.18. Let G be a finite group, and let S be a Sylow 2-subgroup of G. Let n ≥ 1
be a natural number, and let L1, . . . , Ln be pairwise distinct 2-components of G. Assume that
Q := (S ∩ L1) · · · (S ∩ Ln) is a normal subgroup of S and that FS(G)/Q is nilpotent. Then, if L0

is a 2-component of G, we have L0 = Li for some 1 ≤ i ≤ n.

Proposition 2.19. Let p be a prime, and let E be a simple saturated fusion system on a finite
p-group T . Suppose that E is tamely realized (in the sense of [4, Section 2.2]) by a nonabelian
known finite simple group K such that Out(K) is p-nilpotent. Assume moreover that G is a
nonabelian finite simple group containing a Sylow p-subgroup S with T ≤ S such that E E FS(G)
and CS(E) = 1. Then FS(G) is tamely realized by a subgroup L of Aut(K) containing Inn(K)
such that the index of Inn(K) in L is coprime to p.

Proof. Set F := FS(G). By a result of Bob Oliver, namely by [44, Corollary 2.4], F is tamely
realized by a subgroup L of Aut(K) containing Inn(K). We are going to show that the index of
Inn(K) in L is coprime to p.

Let S0 be a Sylow p-subgroup of L. Then F ∼= FS0(L). Clearly, Op(G) = G, and so hnp(F) = S
by the hyperfocal subgroup theorem [19, Theorem 1.33]. It follows that hnp(FS0(L)) = S0.

By the hyperfocal subgroup theorem [19, Theorem 1.33], S0 = hnp(FS0(L)) = Op(L)∩S0. Con-
sequently, Op(L) has p′-index in L, whence Op(L) = L. So we have Op(L/Inn(K)) = L/Inn(K).
On the other hand, L/Inn(K) is p-nilpotent since Out(K) is p-nilpotent. It follows that L/Inn(K)
is a p′-group, as claimed. �

3. Auxiliary results on linear and unitary groups

In this section, we collect several results on linear and unitary groups needed for the proofs of
our main results. Some of the results stated here are known, while others seem to be new. For
the convenience of the reader, we also include proofs of known results when we could not find a
reference in which they appear in the form stated here.

3.1. Basic definitions. We begin with some basic definitions. Let q be a nontrivial prime power,
and let n be a positive integer. The general linear group GLn(q) is the group of all invertible n×n
matrices over Fq under matrix multiplication. The special linear group SLn(q) is the subgroup
of GLn(q) consisting of all n × n matrices over Fq with determinant 1. The center of GLn(q)
consists of all scalar matrices λIn with λ ∈ (Fq)∗. We have Z(SLn(q)) = SLn(q) ∩ Z(GLn(q)).
Set PGLn(q) := GLn(q)/Z(GLn(q)) and PSLn(q) := SLn(q)/Z(SLn(q)). By [35, Kapitel II, Satz
6.10] and [35, Kapitel II, Hauptsatz 6.13], SLn(q) is quasisimple if n ≥ 2 and (n, q) 6= (2, 2), (2, 3).

As in [35, Kapitel II, Bemerkung 10.5 (b)], we consider the general unitary group GUn(q) as the
subgroup of GLn(q2) consisting of all (aij) ∈ GLn(q2) satisfying the condition ((aij)

q)(aij)
t = In.

The special unitary group SUn(q) is the subgroup of GUn(q) consisting of all elements of GUn(q)
with determinant 1. By [35, Kapitel II, Hilfssatz 8.8], we have SL2(q) ∼= SU2(q). The center of
GUn(q) consists of all scalar matrices λIn, where λ ∈ (Fq2)∗ and λq+1 = 1. We have Z(SUn(q)) =
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SUn(q) ∩ Z(GUn(q)). Set PGUn(q) := GUn(q)/Z(GUn(q)) and PSUn(q) := SUn(q)/Z(SUn(q)).
By [33, Theorems 11.22 and 11.26], SUn(q) is quasisimple if n ≥ 2 and (n, q) 6= (2, 2), (2, 3), (3, 2).

We write (P )GL+
n (q) and (P )SL+

n (q) for (P )GLn(q) and (P )SLn(q), respectively. Also, we
write (P )GL−n (q) for (P )GUn(q) and (P )SL−n (q) for PSUn(q).

3.2. Central extensions of PSLn(q) and PSUn(q). In the proofs of the following two lemmas,
we use the terminology of [5, Section 33].

Lemma 3.1. Let n ≥ 3 be a natural number, and let q be a nontrivial odd prime power. Let H
be a perfect central extension of PSLn(q). Then there is a subgroup Z ≤ Z(SLn(q)) such that
H ∼= SLn(q)/Z.

Proof. By [29, pp. 312-313], the Schur multiplier of PSLn(q) is isomorphic to C(n,q−1)
∼= Z(SLn(q)).

From [5, 33.6], we see that this is just another way to say that SLn(q) is the universal cov-
ering group of PSLn(q). Applying [5, 33.6] again, we conclude that H ∼= SLn(q)/Z for some
Z ≤ Z(SLn(q)). �

Lemma 3.2. Let n ≥ 3 be a natural number, and let q be a nontrivial odd prime power. Let H
be a perfect central extension of PSUn(q). Assume that (n, q) 6= (4, 3) or that Z(H) is a 2-group.
Then there is a subgroup Z ≤ Z(SUn(q)) such that H ∼= SUn(q)/Z.

Proof. Suppose that (n, q) 6= (4, 3). By [29, pp. 312-313], the Schur multiplier of PSUn(q) is
isomorphic to C(n,q+1)

∼= Z(SUn(q)). As in the proof of Lemma 3.1, we conclude that H ∼=
SUn(q)/Z for some Z ≤ Z(SUn(q)).

Suppose now that (n, q) = (4, 3) and that Z(H) is a 2-group. Let G := PSU4(3), and let G̃ be

the universal covering group of G. Clearly, the Schur multiplier of G is isomorphic to Z(G̃). By [29,

pp. 312-313], the Schur multiplier of G is isomorphic to C4×C3×C3. Thus Z(G̃) ∼= C4×C3×C3.

Clearly, if Z ≤ Z(G̃), then Z(G̃/Z) = Z(G̃)/Z. Let Q be the unique Sylow 3-subgroup of Z(G̃).

By [5, 33.6], G̃ is a central extension of SU4(3) and of H. Since SU4(3) has a center of order

4, we have SU4(3) ∼= G̃/Q. Let Z ≤ Z(G̃) with H ∼= G̃/Z. As Z(H) is a 2-group, we have

Q ≤ Z, whence H ∼= G̃/Z ∼= (G̃/Q)/(Z/Q) is isomorphic to a quotient of SU4(3) by a central
subgroup. �

3.3. Involutions. In this subsection, we collect several results on the involutions of the groups
(P )GLεn(q) and (P )SLεn(q), where q is a nontrivial odd prime power, n ≥ 2 and ε ∈ {+,−}.

Lemma 3.3. Let q be a nontrivial odd prime power, and let n ≥ 2. Let T be an element of
GLn(q) such that T 2 = λIn for some λ ∈ F∗q. Then one of the following holds:

(i) There is some µ ∈ F∗q such that λ = µ2, and T is GLn(q)-conjugate to a diagonal matrix
with diagonal entries in {µ,−µ}.

(ii) n is even, λ is a non-square element of F∗q, and T is GLn(q)-conjugate to the matrix(
In/2

λIn/2

)
.

Moreover, we have CGLn(q)(T ) ∼= GLn
2
(q2).

Proof. We identify the field Fq with the subfield of Fq2 consisting of all x ∈ Fq2 satisfying xq = x.
It is easy to note that any element of F∗q is the square of an element of F∗q2 . Let µ ∈ F∗q2 with

λ = µ2.
If µ ∈ Fq, then basic linear algebra shows that T is diagonalizable over Fq, and it follows that

(i) holds.
Assume now that µ 6∈ Fq. Then λ is a non-square element of F∗q . Let V be an n-dimensional

vector space over Fq, and let B be an ordered basis of V . Let ϕ be the element of GL(V ) such
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that ϕ is represented by T with respect to B. Clearly, (1, µ) is an Fq-basis of Fq2 . Using that

ϕ2 = λidV , one can check that V becomes a vector space over Fq2 by defining

(x+ yµ)v := xv + yvϕ

for all x, y ∈ Fq and v ∈ V . Let m be the dimension of V over Fq2 , and let (v1, . . . , vm) be an
Fq2-basis of V . Then B0 := (v1, . . . , vm, µv1, . . . , µvm) is an Fq-basis of V . In particular, n = 2m

is even. For 1 ≤ i ≤ m, we have vϕi = µvi and (µvi)
ϕ = (vi)

ϕ2
= λvi. So, with respect to B0, ϕ is

represented by the matrix

M :=

(
In/2

λIn/2

)
.

It follows that T and M are GLn(q)-conjugate.
Let ψ be an automorphism of V as an Fq-vector space centralizing ϕ. For x, y ∈ Fq and v ∈ V ,

we have

((x+ yµ)v)ψ = (xv + yvϕ)ψ = xvψ + yvψϕ = (x+ yµ)vψ,

whence ψ is Fq2-linear. Conversely, if ψ is Fq2-linear, then

vψϕi = µvψi = (µvi)
ψ = vϕψi

and hence ψϕ = ϕψ. It follows that the centralizer of ϕ in the general linear group of V as an Fq-
vector space is equal to the general linear group of V as an Fq2-vector space. Thus CGLn(q)(T ) ∼=
GLn

2
(q2). So (ii) holds. �

Lemma 3.4. Let q be a nontrivial odd prime power, and let n ≥ 2 be a natural number. Let
T ∈ GUn(q).

(i) If T 2 = λIn for some λ ∈ F∗q2, then λ is a square in F∗q2.

(ii) If T 2 = ρ2In for some ρ ∈ F∗q2 with ρq+1 = 1, then T is GUn(q)-conjugate to a diagonal

matrix with diagonal entries in {ρ,−ρ}.
(iii) If T 2 = ρ2In for some ρ ∈ F∗q2 with ρq+1 6= 1, then n is even, and we have CGUn(q)(T ) ∼=

GLn
2
(q2).

Proof. Suppose that T 2 = λIn for some λ ∈ F∗q2 . Since T 2 ∈ GUn(q), we have that λq+1 = 1. It

is easy to see that any element x of F∗q2 with xq+1 = 1 is a square in F∗q2 . So (i) holds.

A proof of (ii) and (iii) can be extracted from [47, pp. 314-315]. �

Proposition 3.5. Let q be a nontrivial odd prime power, and let n ≥ 2 be a natural number. Let
ρ be an element of F∗q of order (n, q − 1). For each even natural number i with 2 ≤ i < n, let

t̃i :=

(
In−i

−Ii

)
∈ SLn(q)

and let ti be the image of t̃i in PSLn(q).

(i) Assume that n is odd. Then each involution of PSLn(q) is PSLn(q)-conjugate to ti for
some even 2 ≤ i < n.

(ii) Assume that n is even and that there is some µ ∈ F∗q with ρ = µ2. For each odd natural
number i with 1 ≤ i < n, the matrix

t̃i :=

(
µIn−i

−µIi

)
lies in SLn(q). Let ti denote the image of t̃i in PSLn(q) for each odd 1 ≤ i < n. Then
each involution of PSLn(q) is PSLn(q)-conjugate to ti for some (even or odd) 1 ≤ i ≤ n

2 .
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(iii) Assume that n is even and that ρ is a non-square element of Fq. Let

w̃ :=

(
In/2

ρIn/2

)
.

If w̃ ∈ SLn(q), then each involution of PSLn(q) is PSLn(q)-conjugate to to ti for some
even 2 ≤ i ≤ n

2 or to w := w̃Z(SLn(q)) ∈ PSLn(q). If w̃ 6∈ SLn(q), then each involution
of PSLn(q) is PSLn(q)-conjugate to ti for some even 2 ≤ i ≤ n

2 .

Proof. We follow arguments found in the proof of [46, Lemma 1.1].
Assume that n is odd. Then Z(SLn(q)) has odd order, and therefore, any involution of PSLn(q)

is the image of an involution of SLn(q). As a consequence of Lemma 3.3, each involution of SLn(q)
is SLn(q)-conjugate to t̃i for some even 2 ≤ i < n. So (i) follows.

Assume now that n is even and that ρ = µ2 for some µ ∈ F∗q . Note that Z(SLn(q)) equals

〈ρIn〉. We claim that µn = −1. Since µ2n = ρn = 1, we have that µn = 1 or −1. If µn = 1, then
µ ∈ 〈ρ〉, and so ρ is a square in 〈ρ〉, which is impossible. So we have µn = −1. It follows that
t̃i ∈ SLn(q) for each odd 1 ≤ i < n. Now let T ∈ SLn(q) such that TZ(SLn(q)) ∈ PSLn(q) is an
involution. Then we have T 2 = ρ`In = µ2`In for some 1 ≤ ` ≤ (n, q − 1). Using Lemma 3.3, we
conclude that T is SLn(q)-conjugate to a diagonal matrix D ∈ SLn(q) with diagonal entries in
{µ`,−µ`}. Let 1 ≤ i < n such that −µ` occurs precisely i times as a diagonal entry of D. If i is
odd, we may assume that D = µ`−1t̃i, and if i is even, we may assume that D = µ`t̃i. In either
case, the image of D in PSLn(q) is ti. Hence, TZ(SLn(q)) is PSLn(q)-conjugate to ti. Noticing
that ti is PSLn(q)-conjugate to tn−i, we conclude that (ii) holds.

Now assume that n is even and that ρ is a non-square element of Fq. Again let T be an element

of SLn(q) such that TZ(SLn(q)) ∈ PSLn(q) is an involution. We have T 2 = ρ`In for some
1 ≤ ` ≤ (n, q − 1). Assume that ` is even. Then Lemma 3.3 implies that T or −T is SLn(q)-

conjugate to ρ
`
2 t̃i for some even 2 ≤ i ≤ n

2 . It follows that TZ(SLn(q)) is PSLn(q)-conjugate

to ti for some even 2 ≤ i ≤ n
2 . Assume now that ` is odd. As ρ is not a square in Fq, but ρ`−1

is a square in Fq, ρ` cannot be a square in Fq. Using Lemma 3.3, we may conclude that T is
GLn(q)-conjugate to the matrix

M :=


0 ρ`

1 0
. . .

0 ρ`

1 0

 ∈ SLn(q).

It is rather easy to see that T and M are even conjugate in SLn(q). Let k := `−1
2 . It is not hard

to show that the matrices (
0 ρ`

1 0

)
and

(
0 ρk+1

ρk 0

)
are SL2(q)-conjugate. So it follows that M and hence T is SLn(q)-conjugate to ρkM2, where

M2 :=


0 ρ
1 0

. . .

0 ρ
1 0

 ∈ SLn(q).

Consequently, the images of T and M2 in PSLn(q) are conjugate. Furthermore, as det(M2) =
det(w̃), we see that w̃ ∈ SLn(q). Also, w̃ is SLn(q)-conjugate to M2, and so TZ(SLn(q)) is
PSLn(q)-conjugate to w. �
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Lemma 3.6. Let q be a nontrivial odd prime power and let n ≥ 4 be an even natural number. Let
ρ be an element of F∗q of order (n, q − 1). Suppose that ρ is a non-square element of Fq and that

w̃ :=

(
In/2

ρIn/2

)
lies in SLn(q). Denote the image of w̃ in PSLn(q) by w. Set C := CPSLn(q)(w). Let P be a
Sylow 2-subgroup of C. Then the following hold:

(i) C has a unique 2-component J , and J is isomorphic to a nontrivial quotient of SLn
2
(q2).

(ii) We have P ∩ J E P , and the factor system FP (C)/(P ∩ J) is nilpotent.
(iii) If n ≥ 6, then P has rank at least 4.

Proof. Set C0 := CSLn(q)(w̃)/Z(SLn(q)) ≤ C. By a direct argument, C0 has index 2 in C. So
the 2-components of C are precisely the 2-components of C0. One may deduce from Lemma 3.3

that CSLn(q)(w̃) has a normal subgroup J̃ isomorphic to SLn
2
(q2) such that the corresponding

factor group is cyclic. Let J be the image of J̃ in PSLn(q). Then J is isomorphic to a nontrivial
quotient of SLn

2
(q2). Moreover, J E C0 and C0/J is cyclic. Therefore, J is the only 2-component

of C0 and hence the only 2-component of C. Thus (i) holds.
We have P ∩ J E P because J E C. By Lemma 2.11, the factor system FP (C)/(P ∩ J) is

isomorphic to the 2-fusion system of C/J . Since C0 has index 2 in C and C0/J is abelian, we
have that C/J is 2-nilpotent. So C/J has a nilpotent 2-fusion system, and (ii) follows.

We now prove (iii). Assume that n ≥ 6. Let u denote the image of
0 ρ
1 0

. . .

0 ρ
1 0

 ∈ SLn(q)

in PSLn(q). It is easy to see that there exist a, b ∈ Fq with a2ρ− b2ρ2 = 1. Let s be the image of
−bρ aρ
−a bρ

. . .

−bρ aρ
−a bρ

 ∈ SLn(q)

in PSLn(q). By a direct calculation, s ∈ CPSLn(q)(u). Another direct calculation shows that s is
an involution. Let z1 denote the image of(

−I2

In−2

)
∈ SLn(q)

in PSLn(q), and let z2 denote the image ofI2

−I2

In−4

 ∈ SLn(q)

in PSLn(q). Then one can easily verify that 〈s, u, z1, z2〉 ≤ CPSLn(q)(u) is isomorphic to E16. So
a Sylow 2-subgroup of CPSLn(q)(u) has rank at least 4. This is also true for P as w and u are
conjugate (see Proposition 3.5). �

Lemma 3.7. Let n ≥ 2 be a natural number and let ε ∈ {+,−}. Also, let T ∈ GLεn(3)\Z(GLεn(3))
such that T 2 ∈ Z(GLεn(3)). Then CGLεn(3)(T ) is core-free.
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Proof. By Lemmas 3.3 and 3.4, we either have CGLεn(3)(T ) ∼= GLεi (3)×GLεn−i(3) for some 1 ≤ i <
n, or n is even and CGLεn(3)(T ) ∼= GLn/2(9). So we have that CGLεn(3)(T ) is core-free. �

It is easy to deduce the following two corollaries from Lemma 3.7.

Corollary 3.8. Let n ≥ 2 be a natural number and let ε ∈ {+,−}. Then any involution centralizer
in SLεn(3) is core-free.

Corollary 3.9. Let n ≥ 2 be a natural number and let ε ∈ {+,−}. Then any involution centralizer
in PGLεn(3) is core-free.

3.4. Sylow 2-subgroups and 2-fusion systems. In this subsection, we consider several prop-
erties of Sylow 2-subgroups and 2-fusion systems of linear and unitary groups.

Lemma 3.10. ([18, p. 142]) Let q be a nontrivial odd prime power. Let k, s ∈ N such that 2k is
the 2-part of q − 1 and that 2s is the 2-part of q + 1. Then:

(i) Assume that q ≡ 1 mod 4. Then{(
λ

µ

)
: λ, µ are 2-elements of F∗q

}
·
〈(

0 1
1 0

)〉
is a Sylow 2-subgroup of GL2(q). In particular, the Sylow 2-subgroups of GL2(q) are
isomorphic to the wreath product C2k o C2.

(ii) If q ≡ 3 mod 4, then the Sylow 2-subgroups of GL2(q) are semidihedral of order 2s+2.

Lemma 3.11. ([18, p. 143]) Let q be a nontrivial odd prime power. Let k, s ∈ N such that 2k is
the 2-part of q − 1 and that 2s is the 2-part of q + 1. Then:

(i) If q ≡ 1 mod 4, then the Sylow 2-subgroups of GU2(q) are semidihedral of order 2k+2.
(ii) If q ≡ 3 mod 4, then the Sylow 2-subgroups of GU2(q) are isomorphic to the wreath product

C2s oC2. If ε ∈ F∗q2 has order 2s, then a Sylow 2-subgroup of GU2(q) is concretely given by

W :=

{(
λ

µ

)
: λ, µ ∈ 〈ε〉

}
·
〈(

0 1
1 0

)〉
.

Lemma 3.12. ([35, Kapitel II, Satz 8.10 a)]) If q is a nontrivial odd prime power, then a Sylow
2-subgroup of SL2(q) is generalized quaternion of order (q2 − 1)2.

Lemma 3.13. ([35, Kapitel II, Satz 8.10 b)]) If q is a nontrivial odd prime power, then PSL2(q)
has dihedral Sylow 2-subgroups of order 1

2(q2 − 1)2.

Lemma 3.14. ([18, Lemma 1]) Let q be a nontrivial odd prime power and let ε ∈ {+,−}. Let r
be a positive integer. Let Wr be a Sylow 2-subgroup of GLε2r(q). Then Wr o C2 is isomorphic to a
Sylow 2-subgroup of GLε2r+1(q). A Sylow 2-subgroup of GLε2r+1(q) is concretely given by{(

A
B

)
: A,B ∈Wr

}
·
〈(

I2r

I2r

)〉
.

Lemma 3.15. ([18, Theorem 1]) Let q be a nontrivial odd prime power and let n be a positive
integer. Let ε ∈ {+,−}. Let 0 ≤ r1 < · · · < rt such that n = 2r1 + · · · + 2rt. Let Wi ∈
Syl2(GLε2ri (q)) for all 1 ≤ i ≤ t. Then W1 × · · · ×Wt is isomorphic to a Sylow 2-subgroup of
GLεn(q). A Sylow 2-subgroup of GLεn(q) is concretely given by

A1

. . .

At

 : Ai ∈Wi

 .

Lemma 3.16. Let q be a prime power with q ≡ 3 mod 4. Let W be a Sylow 2-subgroup of
GL2(q), and let m ∈ N such that |W | = 2m. Then:
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(i) W is semidihedral. In particular, there are elements a, b ∈ W with ord(a) = 2m−1 and

ord(b) = 2 such that ab = a2m−2−1.
(ii) We have W ∩ SL2(q) = 〈a2〉〈ab〉.
(iii) Let 1 ≤ ` ≤ 2m−1. If ` is odd, then a` has determinant −1, and a`b has determinant 1. If

` is even, then a` has determinant 1, and a`b has determinant −1.

(iv) The involutions of W are precisely the elements a2m−2
and a`b, where 2 ≤ ` ≤ 2m−1 is

even.

Proof. By Lemma 3.10 (ii), we have (i).
Let W0 := W ∩ SL2(q). By Lemma 3.12, W0 is generalized quaternion. Also, W0 is a maximal

subgroup of W since SL2(q) has index q − 1 in GL2(q) and q ≡ 3 mod 4. By [24, Chapter
5, Theorem 4.3 (ii) (b)], we have Φ(W ) = 〈a2〉. So the maximal subgroups of W are precisely
the groups M1 := 〈a〉, M2 := 〈a2〉〈b〉 and M3 := 〈a2〉〈ab〉. One can check that M1

∼= C2n−1 ,
M2
∼= D2n−1 and M3

∼= Q2n−1 . Consequently, W0 = 〈a2〉〈ab〉, and (ii) holds.
(iii) follows from (ii) since any element of W \W0 has determinant −1.
The proof of (iv) is an easy exercise. �

Lemma 3.17. Let q be a nontrivial odd prime power, n a positive integer and ε ∈ {+,−}. Let
0 ≤ r1 < · · · < rt such that n = 2r1 +· · ·+2rt. Then there is a Sylow 2-subgroup W of G := GLεn(q)
containing all diagonal matrices in G with 2-power order such that CW (W ∩ SLεn(q)) consists
precisely of the matrices λ1I2r1

. . .

λtI2rt

 ,

where λ1, . . . , λt are 2-elements of F∗q if G = GLn(q) and 2-elements of F∗q2 with λq+1
i = 1 (for

each 1 ≤ i ≤ t) if G = GUn(q).

Proof. Using Lemmas 3.10 and 3.11, one can check that the centralizer of a Sylow 2-subgroup
of SLε2(q) inside a Sylow 2-subgroup of GLε2(q) is the Sylow 2-subgroup of Z(GLε2(q)). Applying
Lemma 3.14 and arguing by induction, one can see that a similar statement holds for the centralizer
of a Sylow 2-subgroup of SLε2r(q) inside a Sylow 2-subgroup of GLε2r(q) for all r ≥ 0. Now we
may apply Lemma 3.15 to obtain a Sylow 2-subgroup of G with the desired properties. �

Lemma 3.18. Let q be a nontrivial odd prime power, n a positive integer and ε ∈ {+,−}. Let
G := SLεn(q), and let S be a Sylow 2-subgroup of G. Then we have Z(FS(G)) = S ∩ Z(G).

Proof. Let 0 ≤ r1 < · · · < rt such that n = 2r1 + · · ·+ 2rt . By Lemma 3.17, we may assume that
Z(S) consists precisely of the matricesλ1I2r1

. . .

λtI2rt

 ,

where λ1, . . . , λt are 2-elements of F∗q with λ2r1
1 · · ·λ2rt

t = 1 if G = SLn(q) and 2-elements of F∗q2
with λq+1

i = 1 (for each 1 ≤ i ≤ t) and λ2r1
1 · · ·λ2rt

t = 1 if G = SUn(q). Moreover, by Lemma 3.17,
we may assume that S contains each diagonal matrix in G of 2-power order.

Let x be an element of Z(S) with diagonal blocks λ1I2r1 , . . . , λtI2rt . One can easily see that
x is G-conjugate to any diagonal matrix in G that is obtained from x by permuting its diagonal
entries. It follows that, if λi 6= λj for some 1 ≤ i 6= j ≤ t, then x 6∈ Z(FS(G)). This implies
Z(FS(G)) = S ∩ Z(G). �

Proposition 3.19. Let n be a positive integer. Let q, q∗ be nontrivial odd prime powers, and let
ε, ε∗ ∈ {+,−}. If εq ∼ ε∗q∗, then the 2-fusion systems of SLεn(q) and SLε

∗
n (q∗) are isomorphic.
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Proof. Assume that ε 6= ε∗. From εq ∼ ε∗q∗, it is easy to deduce that εq ≡ ε∗q∗ mod 8 and
(q2 − 1)2 = ((q∗)2 − 1)2. So, in view of the remarks at the bottom of p. 11 of [15], we may
apply [15, Proposition 3.3 (a)] to conclude that the 2-fusion system of SLεn(q) is isomorphic to
the 2-fusion system of SLε

∗
n (q∗).

Assume now that ε = ε∗. Using Dirichlet’s theorem [21, Theorem 3.3.1], one can easily see that
there is an odd prime q0 with εq ∼ εq∗ ∼ −εq0. By the preceding paragraph, both the 2-fusion
system of SLεn(q) and the 2-fusion system of SLεn(q∗) are isomorphic to the 2-fusion system of
SL−εn (q0). Consequently, the 2-fusion systems of SLεn(q) and SLε

∗
n (q∗) are isomorphic. �

Proposition 3.20. Let n be a positive integer. Let q, q∗ be nontrivial odd prime powers, and let
ε, ε∗ ∈ {+,−}. If εq ∼ ε∗q∗, then the 2-fusion systems of PSLεn(q) and PSLε

∗
n (q∗) are isomorphic.

Proof. Let S and S∗ be Sylow 2-subgroups of G := SLεn(q) and G∗ := SLε
∗
n (q∗), respectively.

By Proposition 3.19, F := FS(G) and F∗ := FS∗(G∗) are isomorphic. Therefore, F/Z(F) and
F∗/Z(F∗) are isomorphic. Lemma 3.18 implies that F/(S ∩ Z(G)) and F∗/(S∗ ∩ Z(G∗)) are
isomorphic. Now the proposition follows from Lemma 2.11. �

The following lemma shows together with [10, Theorem 5.6.18] that the 2-fusion system of
PSLn(q) is simple whenever q is odd and n ≥ 3.

Lemma 3.21. Let q be a nontrivial odd prime power and n ≥ 2 a natural number such that
(n, q) 6= (2, 3). Moreover, let ε be an element of {+,−}. Then PSLεn(q) is a Goldschmidt group
if and only if n = 2 and q ≡ 3 or 5 mod 8.

Proof. Set G := PSLεn(q).
Assume that n = 2. Then G ∼= PSL2(q). By Lemma 3.13, G has dihedral Sylow 2-subgroups

of order 1
2(q − 1)2(q + 1)2. So, if q ≡ 3 or 5 mod 8, then G has abelian Sylow 2-subgroups and

is thus a Goldschmidt group. If q ≡ 1 or 7 mod 8, then the Sylow 2-subgroups of G are dihedral
of order at least 8 and hence nonabelian. Moreover, if q ≡ 1 or 7 mod 8, then [48, Theorem 37]
shows that G is not isomorphic to a finite simple group of Lie type in characteristic 2 of Lie rank
1. So G is not a Goldschmidt group if q ≡ 1 or 7 mod 8.

Assume now that n ≥ 3. Again, we see from [48, Theorem 37] that there is no finite simple
group of Lie type in characteristic 2 of Lie rank 1 which is isomorphic to G. Also, G has a subgroup
isomorphic to SLε2(q) ∼= SL2(q), and therefore, the Sylow 2-subgroups of G are nonabelian.
Consequently, G is not a Goldschmidt group. �

Lemma 3.22. Let n be a positive integer, q a nontrivial odd prime power and ε ∈ {+,−}. Let E
be the subgroup of SLεn(q) consisting of the diagonal matrices in SLεn(q) with diagonal entries in
{1,−1}. Then |E| = 2n−1. Moreover, any elementary abelian 2-subgroup of SLεn(q) is conjugate
to a subgroup of E.

Proof. It is straightforward to check that |E| = 2n−1.
Let E0 be an elementary abelian 2-subgroup of SLεn(q). We show that E0 is conjugate to a

subgroup of E. Using Dirichlet’s theorem [21, Theorem 3.3.1], one can see that there is an odd
prime number q∗ with −q ∼ q∗, and Proposition 3.19 shows that the 2-fusion systems of SUn(q)
and SLn(q∗) are isomorphic. Therefore, it is enough to consider the case ε = +.

Since E0 is an elementary abelian 2-group, any two elements of E0 commute, and any element
of E0 is diagonalizable (see Lemma 3.3). It follows that E0 is simultaneously diagonalizable, and
this implies that E0 is conjugate to a subgroup of E. �

Lemma 3.23. Let q be a nontrivial odd prime power, n ≥ 3 a natural number and S a Sylow
2-subgroup of PSLn(q). Then AutPSLn(q)(S) = Inn(S).

Proof. Let R ∈ Syl2(SLn(q)) such that S is the image of R in PSLn(q). Let T be a Sylow
2-subgroup of GLn(q) with R ≤ T . By [36, Theorem 1], we have NGLn(q)(R) = TCGLn(q)(T ).
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So we have that AutSLn(q)(R) is a 2-group. Since the image of NSLn(q)(R) in PSLn(q) equals
NPSLn(q)(S) (see [35, Kapitel I, Hilfssatz 7.7 c)]), it follows that AutPSLn(q)(S) is a 2-group, and
this implies AutPSLn(q)(S) = Inn(S). �

3.5. k-connectivity. In this subsection, we prove some connectivity properties of the Sylow 2-
subgroups of SLn(q) and PSLn(q), where q is a nontrivial odd prime power and n ≥ 6. We will
work with the following definition (see [32, Section 8]):

Definition 3.24. Let S be a finite 2-group, and let k be a positive integer. If A and B are
elementary abelian subgroups of S of rank at least k, then A and B are said to be k-connected if
there is a sequence

A = A1, A2, . . . , An = B (n ≥ 1)

of elementary abelian subgroups Ai, 1 ≤ i ≤ n, of S with rank at least k such that

Ai ⊆ Ai+1 or Ai+1 ⊆ Ai
for all 1 ≤ i ≤ n − 1. The group S is said to be k-connected if any two elementary abelian
subgroups of S of rank at least k are k-connected.

Lemma 3.25. ([32, Lemma 8.4]) Let S be a finite 2-group, and let k be a positive integer. If S
has a normal elementary abelian subgroup of rank at least 2k−1 + 1, then S is k-connected.

Lemma 3.26. Let q be a nontrivial odd prime power with q ≡ 1 mod 4, and let n ≥ 6 be a natural
number. Then the Sylow 2-subgroups of PSLn(q) and those of SLn(q) are 3-connected.

Proof. Let W0 be the unique Sylow 2-subgroup of GL1(q), and let W1 be the Sylow 2-subgroup
of GL2(q) given in Lemma 3.10 (i). For each r ≥ 2, let Wr be the Sylow 2-subgroup of GL2r(q)
obtained from Wr−1 by the construction given in the last statement of Lemma 3.14. Let 0 ≤ r1 <
· · · < rt such that n = 2r1 + · · · + 2rt , and let W be the Sylow 2-subgroup of GLn(q) obtained
from Wr1 , . . . ,Wrt by using the last statement of Lemma 3.15.

Let R denote the subgroup of GLn(q) consisting of all diagonal matrices D ∈ GLn(q), where
D2 ∈ Z(GLn(q)) and any diagonal element of D is a 2-element of F∗q . It is easy to note that
R EW .

Set R0 := R ∩ SLn(q). Then Ω1(R0), the subgroup of R0 generated by all involutions of R0, is
elementary abelian of order 2n−1 ≥ 25, and Ω1(R0) EW ∩SLn(q). Also, R0Z(SLn(q))/Z(SLn(q))
is a normal elementary abelian subgroup of (W ∩ SLn(q))Z(SLn(q))/Z(SLn(q)), and one can
easily check that the order of R0Z(SLn(q))/Z(SLn(q)) is at least 25. Lemma 3.25 implies that
W ∩ SLn(q) and its image in PSLn(q) are 3-connected. �

Lemma 3.25 and the proof of Lemma 3.26 show that we also have the following:

Lemma 3.27. Let q be a nontrivial odd prime power with q ≡ 1 mod 4, and let n ≥ 6 be a natural
number. Then the Sylow 2-subgroups of PSLn(q) and those of SLn(q) are 2-connected.

We now study the case q ≡ 3 mod 4.

Lemma 3.28. Let q be a nontrivial odd prime power with q ≡ 3 mod 4, and let n ≥ 6 be a natural
number. Then the Sylow 2-subgroups of PSLn(q) and those of SLn(q) are 2-connected. If n ≥ 10,
then we even have that the Sylow 2-subgroups of PSLn(q) and those of SLn(q) are 3-connected.

Proof. Let W0 denote the unique Sylow 2-subgroup of GL1(q), and let W1 be a Sylow 2-subgroup
of GL2(q). By Lemma 3.10 (ii), W1 is semidihedral. Let m ∈ N with |W1| = 2m. Also, let

h, a ∈ W1 such that ord(h) = 2m−1, ord(a) = 2 and ha = h2m−2−1. Set z := −I2 = h2m−2
. For

each r ≥ 2, let Wr be the Sylow 2-subgroup of GL2r(q) obtained from Wr−1 by the construction
given in the last statement of Lemma 3.14. Let 0 ≤ r1 < · · · < rt such that n = 2r1 + · · ·+2rt , and
let W be the Sylow 2-subgroup of GLn(q) obtained from Wr1 , . . . ,Wrt by using the last statement
of Lemma 3.15.
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Given a natural number ` ≥ 1 and elements x1, . . . , x` ∈ GL2(q), we write diag(x1, . . . , x`) for
the block diagonal matrix x1

. . .

x`

 .

For each natural number r ≥ 1, let Ar denote the subgroup of GL2r(q) consisting of the matrices
diag(x1, . . . , x2r−1), where either xi ∈ 〈z〉 for all 1 ≤ i ≤ 2r−1 or xi is an element of 〈h〉 with order
4 for all 1 ≤ i ≤ 2r−1. By induction over r, one can see that Ar E Wr for all r ≥ 1. Also, let

Ãr := Ω1(Ar) for all r ≥ 1. Clearly, Ãr EWr for all r ≥ 1.
We now consider two cases.

Case 1: n is even.
Let E be the subgroup of GLn(q) consisting of the matrices diag(x1, . . . , xn

2
), where either

xi ∈ 〈z〉 for all 1 ≤ i ≤ n
2 or xi is an element of 〈h〉 with order 4 for all 1 ≤ i ≤ n

2 . Let Ẽ := Ω1(E).

Since Ari E Wri for all 1 ≤ i ≤ t, we have that E and Ẽ are normal subgroups of W . Lemma
3.16 (iii) shows that E ≤W ∩ SLn(q).

As Ẽ is elementary abelian of order 2
n
2 , Lemma 3.25 implies that W ∩ SLn(q) is 2-connected,

and even 3-connected if n ≥ 10. Since EZ(SLn(q))/Z(SLn(q)) is a normal elementary abelian

subgroup of (W ∩ SLn(q))Z(SLn(q))/Z(SLn(q)) with order 2
n
2 , Lemma 3.25 also shows that a

Sylow 2-subgroup is 2-connected, and even 3-connected if n ≥ 10.

Case 2: n is odd.
Now let E denote the subgroup of GLn(q) consisting of the matrices

1
x1

. . .

xn−1
2

 ,

where xi ∈ 〈z〉 for all 1 ≤ i ≤ n−1
2 . Since Ãri E Wri for all 2 ≤ i ≤ t, we have that E is a normal

subgroup of W ∩ SLn(q). Moreover, E is elementary abelian of order 2
n−1
2 . Lemma 3.25 implies

that W ∩ SLn(q) is 2-connected, and even 3-connected if n ≥ 11. There is nothing else to show
since the Sylow 2-subgroups of PSLn(q) are isomorphic to those of SLn(q) (as n is odd). �

We show next that the groups SLn(q), where 6 ≤ n ≤ 9 and q ≡ 3 mod 4, and the groups
PSLn(q), where 7 ≤ n ≤ 9 and q ≡ 3 mod 4, also have 3-connected Sylow 2-subgroups.

Lemma 3.29. Let q be a nontrivial odd prime power with q ≡ 3 mod 4. Then the Sylow 2-
subgroups of SL6(q) and those of SL7(q) are 3-connected.

Proof. Let W1 be a Sylow 2-subgroup of GL2(q), let W2 be the Sylow 2-subgroup of GL4(q)
obtained from W1 by the construction given in the last statement of Lemma 3.14, and let W be
the Sylow 2-subgroup of GL6(q) obtained from W1 and W2 by using the last statement of Lemma
3.15.

From Lemma 3.15, we see that the Sylow 2-subgroups of SL7(q) are isomorphic to those of
GL6(q). So it is enough to show that W and W ∩ SL6(q) are 3-connected. Given elements
x1, x2, x3 ∈ GL2(q), we write diag(x1, x2, x3) for the block diagonal matrixx1

x2

x3

 .
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Let A be the subgroup of W ∩SL6(q) consisting of the matrices diag(x1, x2, x3), where xi ∈ 〈−I2〉
for 1 ≤ i ≤ 3. Clearly, A ∼= E8. We prove the following:

(1) If E is an elementary abelian subgroup of W of rank at least 3, then E is 3-connected to
an elementary abelian subgroup of W ∩ SL6(q) of rank at least 3.

(2) If E is an elementary abelian subgroup of W ∩ SL6(q) of rank at least 3, then E is
3-connected to A in W ∩ SL6(q).

By (1) and (2), any elementary abelian subgroup of W of rank at least 3 is 3-connected to A, and
so W is 3-connected. Similarly, (2) implies that W ∩ SL6(q) is 3-connected.

Let Z := 〈diag(−I2, I2, I2),diag(I2,−I2,−I2)〉. Since Z ≤ Z(W ), we have that any elementary
abelian subgroup of W of rank at least 3 is 3-connected to an E8-subgroup of W containing
Z. Also, any elementary abelian subgroup of W ∩ SL6(q) of rank at least 3 is 3-connected (in
W ∩SL6(q)) to an E8-subgroup of W ∩SL6(q) containing Z. Therefore, we only need to consider
E8-subgroups containing Z in order to prove (1) and (2).

So let E be an E8-subgroup of W with Z ≤ E, and let s ∈ E \ Z. Suppose that s =
diag(s1, s2, s3), where s1, s2, s3 ∈ W1. Then [E,A] = 1, and it is easy to deduce that E is 3-
connected to A, so that E satisfies (1). Also, if E ≤ W ∩ SL6(q), it is easy to deduce that E
satisfies (2).

Suppose now that

s =

s1

s2

s3


for some s1, s2, s3 ∈ W1. Since s2 = I6, we have s2 = s−1

3 . Let a be an involution of W1 with
a 6= −I2. Set s∗ := diag(I2, a, a

s2) and E∗ := 〈Z, s∗〉 ∼= E8. Clearly, E∗ ≤ W ∩ SL6(q). It is
easy to check that [E,E∗] = 1, which implies that E is 3-connected to E∗. So E satisfies (1). If
E ≤ W ∩ SL6(q), then E is 3-connected to E∗ in W ∩ SL6(q), and E∗ is 3-connected to A in
W ∩ SL6(q) since [E∗, A] = 1. Therefore, E satisfies (2) when E ≤W ∩ SL6(q). �

Let q be a nontrivial odd prime power with q ≡ 3 mod 4. A Sylow 2-subgroup of PSL7(q)
is isomorphic to a Sylow 2-subgroup of SL7(q). So, by Lemma 3.29, the Sylow 2-subgroups of
PSL7(q) are 3-connected.

We need the following lemma in order to prove that the Sylow 2-subgroups of SLn(q) and
PSLn(q) are 3-connected when n ∈ {8, 9}.

Lemma 3.30. Let q be a nontrivial odd prime power with q ≡ 3 mod 4, and let V be a Sylow
2-subgroup of GL4(q). Let u ∈ V with u2 = I4 or u2 = −I4. Then there is an involution
v ∈ V \ 〈u,−I4〉 which commutes with u.

Proof. Fix a Sylow 2-subgroup W1 of GL2(q), and let W2 be the Sylow 2-subgroup of GL4(q)
obtained from W1 by the construction given in the last statement of Lemma 3.14. By Sylow’s
Theorem, we may assume that V = W2. Let a be an involution of W1 with a 6= −I2.

First, we consider the case that

u =

(
x

y

)
with elements x, y ∈W1. If x 6∈ 〈−I2〉 or y 6∈ 〈−I2〉, then(

−I2

I2

)
∈W2

is an involution commuting with u and not lying in 〈u,−I4〉. If x, y ∈ 〈−I2〉, then we may choose

v :=

(
a

a

)
.
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Assume now that

u =

(
x

y

)
with elements x, y ∈W1. Let

v :=

(
a

ax

)
.

As a is an involution of W1, we have that v is an involution of W2. By a direct calculation (using
that xy ∈ 〈−I2〉), v has the desired properties. �

Lemma 3.31. Let q be a nontrivial odd prime power with q ≡ 3 mod 4. Then the Sylow 2-
subgroups of SL8(q) and those of SL9(q) are 3-connected.

Proof. Fix a Sylow 2-subgroup W1 of GL2(q), let W2 be the Sylow 2-subgroup of GL4(q) obtained
from W1 by the construction given in the last statement of Lemma 3.14, and let W be the Sylow
2-subgroup of GL8(q) obtained from W2 by the construction given in the last statement of Lemma
3.14. Set S := W ∩ SL8(q).

From Lemma 3.15, we see that the Sylow 2-subgroups of SL9(q) are isomorphic to those of
GL8(q). So it is enough to show that W and S are 3-connected.

Given a natural number ` ≥ 1 and x1, . . . , x` of GL2(q) ∪GL4(q), we write diag(x1, . . . , x`) for
the block diagonal matrix

x1

. . .

x`

 .

Set

A := {diag(x1, x2, x3, x4) | xi ∈ 〈−I2〉 ∀ 1 ≤ i ≤ 4} ≤ S

and

Z := 〈−I8〉 ≤ S.

Clearly, A ∼= E16. Since Z ≤ Z(W ), we have that any elementary abelian subgroup of W of
rank at least 3 is 3-connected to an E8-subgroup of W containing Z. Similarly, any elementary
abelian subgroup of S of rank at least 3 is 3-connected to an E8-subgroup of S containing Z. So
it suffices to prove that any E8-subgroup E of W with Z ≤ E is 3-connected to A, where E is
even 3-connected in S to A if E ≤ S. Thus let E be an E8-subgroup of W containing Z, and let
x, y ∈ E with E = 〈Z, x, y〉.

We consider a number of cases. Below, a will always denote an involution of W1 with a 6= −I2.

Case 1: x = diag(−I4, I4) and y = diag(b1, b2) for some b1, b2 ∈W2.
We determine an involution y1 ∈ CW (E) \ 〈Z, x〉 such that 〈Z, x, y1〉 ∼= E8 is 3-connected to A.

In the case that E ≤ S, we determine y1 such that y1 ∈ S and such that 〈Z, x, y1〉 is 3-connected to
A in S. The existence of such an involution y1 easily implies that E is 3-connected to A, and even
3-connected to A in S if E ≤ S. The involution y1 is given by the following table in dependence
of y. In each row, r1, r2, r3, r4 are assumed to be elements of W1 such that y is equal to the matrix
given in the column “y” and such that the conditions in the column “Conditions” (if any) are
satisfied. The column “y1” gives the involution y1 with the desired properties. For each row, one
can verify the stated properties of y1 by a direct calculation or by using the previous rows.
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Case y Conditions y1

1.1


r1

r2

r3

r4

 y

1.2


r1

r2

r3

r4

 〈r1, r2〉 6≤ 〈−I2〉

r1

r2

I4



1.3


r1

r2

r3

r4

 r1, r2 ≤ 〈−I2〉

a a
I4



1.4


r1

r2

r3

r4

 〈r3, r4〉 6≤ 〈−I2〉

I4

r3

r4



1.5


r1

r2

r3

r4

 r3, r4 ≤ 〈−I2〉

I4

a
a



1.6


r1

r2

r3

r4


 r1

r2

I4


Case 2: x = diag(a1, a2) and y = diag(b1, b2) for some a1, a2, b1, b2 ∈W2.
Set x1 := diag(−I4, I4). Since E = 〈Z, x, y〉 ∼= E8, the elements x and y cannot be both

contained in 〈Z, x1〉. Without loss of generality, we may assume that y 6∈ 〈Z, x1〉. Then E1 :=
〈Z, x1, y〉 ∼= E8. The group E1 is 3-connected to A by Case 1, and it is 3-connected to E since E
and E1 commute. Hence, E is 3-connected to A. Clearly, if E ≤ S, then E is even 3-connected in
S to A.

Case 3: There are a1, a2, b1, b2 ∈W2 with

{x, y} =

{(
a1

a2

)
,

(
b1

b2

)}
.

Without loss of generality, we assume that

x =

(
a1

a2

)
and y =

(
b1

b2

)
.

Since x and y are commuting involutions, we have b1 = b−1
2 and a2 = a1

b1 . By Lemma 3.30, there
is an involution ã1 ∈W2 \ 〈a1,−I4〉 which commutes with a1. Set

y1 :=

(
ã1

ã1
b1

)
.

It is easy to see that y1 ∈ S, and y1 is an involution since ã1 is an involution of W2. We have
[x, y1] = 1 since ã1 commutes with a1 and ã1

b1 commutes with a1
b1 = a2. A direct calculation

using that b1 = b−1
2 shows that we also have [y, y1] = 1. Thus E = 〈Z, x, y〉 commutes with

E1 := 〈Z, x, y1〉. Since ã1 6∈ 〈a1,−I4〉, we have y1 6∈ 〈Z, x〉 and hence E1
∼= E8. Applying Case 2,

it follows that E is 3-connected to A (and even 3-connected in S to A when E ≤ S).
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Case 4: There are a1, a2, b1, b2 ∈W2 with

x =

(
a1

a2

)
and y =

(
b1

b2

)
.

This case can be reduced to Case 3 since E = 〈Z, x, y〉 = 〈Z, x, xy〉. �

Let q be a nontrivial odd prime power with q ≡ 3 mod 4. A Sylow 2-subgroup of PSL9(q)
is isomorphic to a Sylow 2-subgroup of SL9(q). So, by Lemma 3.31, the Sylow 2-subgroups of
PSL9(q) are 3-connected.

Lemma 3.32. Let q be a nontrivial odd prime power with q ≡ 3 mod 4. Then the Sylow 2-
subgroups of PSL8(q) are 3-connected.

Proof. Let W1 be a Sylow 2-subgroup of GL2(q). Let W2 be the Sylow 2-subgroup of GL4(q)
obtained from W1 by the construction given in the last statement of Lemma 3.14, and let W3 be
the Sylow 2-subgroup of GL8(q) obtained from W2 by the construction given in the last statement
of Lemma 3.14. Set S := W3 ∩ SL8(q). For each subgroup or element X of SL8(q), let X denote
the image of X in PSL8(q). We prove that S is 3-connected.

Given a natural number ` ≥ 1 and x1, . . . , x` of GL2(q) ∪GL4(q), we write diag(x1, . . . , x`) for
the block diagonal matrix

x1

. . .

x`

 .

Set

A := {diag(x1, x2, x3, x4) | xi ∈ 〈−I2〉 ∀ 1 ≤ i ≤ 4} ≤ S.

We have A ∼= E8.
Set

Z := 〈diag(−I4, I4)〉 .

We have Z ≤ Z(S). Using this, it is easy to note that any elementary abelian subgroup of S of
rank at least 3 is 3-connected to an E8-subgroup of S containing Z. Hence, it suffices to prove
that any E8-subgroup of S containing Z is 3-connected to A.

Let x, y ∈ S and B := 〈Z, x, y〉. Suppose that B ∼= E8. Considering a number of cases, we will
prove that B is 3-connected to A. Below, a will always denote an involution of W1 with a 6= −I2.

Case 1: x = diag(r1, r2, r3, r4) and y = diag(m1,m2) for some r1, r2, r3, r4 ∈W1 and m1,m2 ∈
W2.

We consider a number of subcases. These subcases are given by the rows of the table below. In
each row, we assume that s1, s2, s3, s4 are elements of W1 such that y is equal to the matrix given
in the column “y”. We also assume that the conditions in the column “Conditions” (if any) are
satisfied. The column “y1” gives an element of S such that y1 is an involution in CS(E) \ 〈Z, x〉
and such that 〈Z, x, y1〉 is 3-connected to A. The existence of such an element y1 easily implies
that B is 3-connected to A.
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Case y Conditions y1

1.1


s1

s2

s3

s4

 y

1.2


s1

s2

s3

s4

 x 6∈ A

I4

−I2

I2



1.3


s1

s2

s3

s4

 x ∈ A

a as
−1
2

I4



1.4


s1

s2

s3

s4

 x 6∈ A


I2

−I2

I2

−I2


1.5


s1

s2

s3

s4

 x ∈ A


a

as
−1
2

a

as
−1
4


The subcase that y has the form 

s1

s2

s3

s4


can be easily reduced to Cases 1.2 and 1.3.

Case 2: There are r1, r2, r3, r4 ∈W1 and m1,m2 ∈W2 with

x =


r1

r2

r3

r4

 and y =

(
m1

m2

)
.

Case 2.1: There are s1, s2, s3, s4 ∈W1 with

y =


s1

s2

s3

s4

 or y =


s1

s2

s3

s4

 .

Noticing that 〈Z, x, y〉 = 〈Z, x, xy〉, this case can be reduced to Case 1.

Case 2.2: There are s1, s2, s3, s4 ∈W1 with

y =


s1

s2

s3

s4

 .
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Since B ∼= E8, we have εxy = x, where ε ∈ {+,−}. By a direct calculation, we have

xy =


s−1

1 r1s2

s−1
2 r2s1

rs44
rs33

 .

As x = εxy, we have r1 = εs−1
1 r1s2, r2 = εs−1

2 r2s1, r3 = εrs44 and r4 = εrs33 . Note that εsr11 = s2

and εsr22 = s1.
We now consider a number of subsubcases. These subsubcases are given by the rows of the

table below. The columns “Condition 1” and “Condition 2” describe the subsubcase under consid-
eration. The column “y1” gives an element y1 ∈ S such that y1 is an involution in CS(E) \ 〈Z, x〉
and such that 〈Z, x, y1〉 is 3-connected to A. In each subsubcase, one can see from the above
calculations and from the previous cases that y1 indeed has the stated properties. The existence
of such an element y1 easily implies that B is 3-connected to A in all subsubcases.

Case Condition 1 Condition 2 y1

2.2.1 x2 = I8 = y2 〈r3, r4〉 6≤ 〈−I2〉


εs1

s2

εr3

r4


2.2.2 x2 = I8 = y2 〈r3, r4〉 ≤ 〈−I2〉


r1

r2

εa
as3


2.2.3 x2 = −I8 = y2


εs1

s2

εr3

r4


2.2.4 x2 = I8, y

2 = −I8 〈r3, r4〉 6≤ 〈−I2〉

I4

εr3

r4


2.2.5 x2 = I8, y

2 = −I8 〈r3, r4〉 ≤ 〈−I2〉

I4

εa
εas3


The case that x2 = −I8 and y2 = I8 can be easily reduced to Cases 2.2.4 and 2.2.5.

Case 2.3: There are s1, s2, s3, s4 ∈W1 with

y =


s1

s2

s3

s4

 .

Since 〈Z, x, y〉 = 〈Z, x, xy〉, this case can be reduced to Case 2.2.

Case 3: There are r1, r2, r3, r4 ∈W1 and m1,m2 ∈W2 with

x =


r1

r2

r3

r4

 and y =

(
m1

m2

)
.

This case can be reduced to Case 2.
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Case 4: There are r1, r2, r3, r4 ∈W1 and m1,m2 ∈W2 with

x =


r1

r2

r3

r4

 and y =

(
m1

m2

)
.

In view of Cases 1-3, we may assume that

y =


s1

s2

s3

s4


for some s1, s2, s3, s4 ∈W1. Since 〈Z, x, y〉 = 〈Z, x, xy〉, we can now reduce the given case to Case
1.

Case 5: There are a1, a2, b1, b2 ∈W2 with

{x, y} =

{(
a1

a2

)
,

(
b1

b2

)}
.

Without loss of generality, we assume that

x =

(
a1

a2

)
and y =

(
b1

b2

)
.

We have x2 ∈ 〈−I8〉 since B = 〈Z, x, y〉 ∼= E8, and hence a1
2 ∈ 〈−I4〉. So, by Lemma 3.30, there

is an involution ã1 ∈W2 \ 〈a1,−I4〉 which commutes with a1. Set

y1 :=

(
ã1

ã1
b1

)
.

Clearly, y1 is an involution of S. As [x, y] ∈ 〈−I8〉, we have a1
b1 ∈ {a2,−a2}. Since a1 and ã1

commute, it follows that ã1
b1 and a2 commute. So we have [x, y1] = 1 and hence [x, y1] = 1. Using

that y2 ∈ 〈−I8〉, one can easily verify that [y, y1] = 1 and hence [y, y1] = 1. As ã1 6∈ 〈a1,−I4〉, we
have y1 6∈ 〈Z, x〉.

Now 〈Z, x, y1〉 is an E8-subgroup of S which commutes with B and which is 3-connected to A
by Cases 1-4. Thus B is 3-connected to A.

Case 6: There are a1, a2, b1, b2 ∈W2 with

x =

(
a1

a2

)
and y =

(
b1

b2

)
.

Noticing that 〈Z, x, y〉 = 〈Z, x, xy〉, we can reduce this case to Case 5. �

We summarize the above lemmas in the following corollary.

Corollary 3.33. Let q be a nontrivial odd prime power and n ≥ 6. Then the following hold:

(i) The Sylow 2-subgroups of SLn(q) and those of PSLn(q) are 2-connected.
(ii) The Sylow 2-subgroups of SLn(q) are 3-connected.
(iii) If q ≡ 1 mod 4 or n ≥ 7, then the Sylow 2-subgroups of PSLn(q) are 3-connected.

Unfortunately, the Sylow 2-subgroups of PSL6(q) are not 3-connected when q ≡ 3 mod 4 (this
is not terribly difficult to observe).
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Corollary 3.34. Let q be a nontrivial odd prime power and n ≥ 6. Let G = SLn(q), or G =
PSLn(q) and n ≥ 7 if q ≡ 3 mod 4. For any Sylow 2-subgroup S of G and any elementary
abelian subgroup A of S with m(A) ≤ 3, there is some elementary abelian subgroup B of S with
A < B and m(B) = 4.

Proof. By Corollary 3.33, S is 2-connected and 3-connected. Applying [32, Lemma 8.7], the claim
follows. �

3.6. Generation. Next we discuss some generational properties of (P )SLn(q) and (P )SUn(q),
where n ≥ 3 and q is a nontrivial odd prime power. We need the following definition (see [32,
Section 8]).

Definition 3.35. Let G be a finite group, let S be a Sylow 2-subgroup of G, and let k be a
positive integer. We say that G is k-generated if

G = ΓS,k(G) := 〈NG(T ) | T ≤ S,m(T ) ≥ k〉.

The following two lemmas will later prove to be useful.

Lemma 3.36. (see [6]) Let q be a nontrivial odd prime power. Then the groups SL3(q), PSL3(q),
SU3(q) and PSU3(q) are 2-generated.

Lemma 3.37. Let q be a nontrivial odd prime power, and let n ≥ 4 be a natural number. More-
over, let ε ∈ {+,−} and Z ≤ Z(SLεn(q)). Assume that one of the following holds:

(i) n ≥ 5,
(ii) q ≡ ε mod 8,

(iii) Z = 1.

Then SLεn(q)/Z is 3-generated.

We need the following lemma in order to prove Lemma 3.37.

Lemma 3.38. (see [45], [14]) Let q > 2 be a prime power, and let n ≥ 3 be a natural number.
Let ε ∈ {+,−}. Define

U1 :=

{(
A

In−2

)
: A ∈ SLε2(q)

}
and

Un−1 :=

{(
In−2

A

)
: A ∈ SLε2(q)

}
.

Moreover, for each 2 ≤ i ≤ n− 2, let

Ui :=


Ii−1

A
In−i−1

 : A ∈ SLε2(q)

 .

Then the following hold:

(i) We have SLεn(q) = 〈Ui : 1 ≤ i ≤ n− 1〉.
(ii) For each 1 ≤ i ≤ n− 2, there is a monomial matrix mi in SLεn(q) with Umii = Ui+1.

Proof of Lemma 3.37. Let q be a nontrivial odd prime power, and let n ≥ 4 be a natural number.
Moreover, let ε ∈ {+,−} and Z ≤ Z(SLεn(q)). Suppose that one of the conditions n ≥ 5,
q ≡ ε mod 8 or Z = 1 is satisfied. We have to show that SLεn(q)/Z is 3-generated.

Let U1, . . . , Un−1 denote the SLε2(q)-subgroups of SLεn(q) corresponding to the 2 × 2 blocks
along the main diagonal (as in Lemma 3.38). Let E be the subgroup of SLεn(q) consisting of the
diagonal matrices in SLεn(q) with diagonal entries in {−1, 1}.

Assume that n ≥ 5. Then one can easily see that, for each i ∈ {1, . . . , n − 1}, there is an
E8-subgroup Ei of E with Ei ∩ Z(SLεn(q)) = 1 and [Ei, Ui] = 1. Hence, UiZ/Z centralizes
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EiZ/Z ∼= E8 for each i ∈ {1, . . . , n− 1}. Now, if S is a Sylow 2-subgroup of SLεn(q)/Z containing
EZ/Z, we have UiZ/Z ≤ ΓS,3(SLεn(q)/Z) for each i ∈ {1, . . . , n− 1}, and Lemma 3.38 (i) implies
that SLεn(q)/Z is 3-generated.

We now consider the case n = 4. By hypothesis, Z = 1 or q ≡ ε mod 8. Let

U :=


 A

0
0

0 0 1

 : A ∈ SLε3(q)

 .

If Z = 1, set y := −I4. If q ≡ ε mod 8, let λ be an element of F∗q2 of order 8 such that λq−ε = 1.

Note that λ ∈ F∗q if ε = +. Also, if q ≡ ε mod 8 and |Z| = 2, let y := λ2I4 ∈ SLε4(q), and if
q ≡ ε mod 8 and |Z| = 4, let y := diag(λ, λ, λ,−λ) ∈ SLε4(q).

Let S0 be a Sylow 2-subgroup of U containing E ∩ U . Let S̃ be a Sylow 2-subgroup of SLε4(q)

containing S0 and y. Denote the image of S̃ in SLε4(q)/Z by S. We have S ∩ UZ/Z = S0Z/Z ∈
Syl2(UZ/Z). By Lemma 3.36, UZ/Z ∼= U ∼= SLε3(q) is 2-generated. So we have

UZ/Z = ΓS0Z/Z,2(UZ/Z) = 〈NUZ/Z(T ) | T ≤ S0Z/Z,m(T ) ≥ 2〉.

Let T ≤ S0Z/Z with m(T ) ≥ 2 and T̂ := 〈T, yZ〉. Clearly, yZ is an involution of S not

contained in UZ/Z and centralizing UZ/Z. Therefore, we have that m(T̂ ) ≥ 3 and NUZ/Z(T ) ≤
NSLεn(q)/Z(T̂ ). It follows that UZ/Z ≤ ΓS,3(SLεn(q)/Z). In particular, UiZ/Z ≤ ΓS,3(SLεn(q)/Z)
for i ∈ {1, 2}.

From Lemma 3.38 (ii), we see that there is some m ∈ SLε4(q) such that U2
m = U3 and such that

m normalizes 〈E, y〉. So mZ normalizes 〈EZ/Z, yZ〉. It is easy to note that 〈EZ/Z, yZ〉 ∼= E8,
and so we have mZ ∈ ΓS,3(SLεn(q)/Z). It follows that U3Z/Z = (U2Z/Z)mZ ≤ ΓS,3(SLεn(q)/Z).

So we have UiZ/Z ≤ ΓS,3(SLεn(q)/Z) for i ∈ {1, 2, 3}, and Lemma 3.38 (i) implies that
SLεn(q)/Z is 3-generated. �

3.7. Automorphisms of (P )SLn(q). Fix a prime number p, a positive integer f and a natural
number n ≥ 2. Set q := pf and T := SLn(q). We now briefly describe the structure of Aut(T/Z),
where Z ≤ Z(T ), referring to [20] and [17, Section 2.1] for further details.

Let Inndiag(T ) := AutGLn(q)(T ). Note that

Inndiag(T )/Inn(T ) ∼= C(n,q−1).

The map
φ : T → T, (aij) 7→ (aij

p)

is an automorphism of T with order f . One can check that φ normalizes Inndiag(T ). Set

PΓLn(q) := Inndiag(T )〈φ〉.
It is easy to note that 〈φ〉 ∩ Inndiag(T ) = 1, so that PΓLn(q) is the inner semidirect product of
Inndiag(T ) and 〈φ〉.

The map
ι : T → T, a 7→ (at)−1

is an automorphism of T with order 2. If n = 2, then ι turns out to be an inner automorphism of
T , while we have ι 6∈ PΓLn(q) when n ≥ 3. By a direct calculation, ι normalizes Inndiag(T ) and
commutes with φ. In particular, A := PΓLn(q)〈ι〉 is a subgroup of Aut(T ), and we have

A/Inndiag(T ) ∼= Cf × Ca,
where a = 1 if n = 2 and a = 2 if n ≥ 3.

Now let Z be a central subgroup of T . It can be easily checked that the natural homomorphism
Aut(T ) → Aut(T/Z) is injective. The image of Inndiag(T ) under this homomorphism will be
denoted by Inndiag(T/Z). By abuse of notation, we denote the image of PΓLn(q) in Aut(T/Z)
again by PΓLn(q) and the images of ι and φ again by ι and φ, respectively.
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With this notation, we have

Aut(T/Z) = PΓLn(q)〈ι〉.
Note that the natural homomorphism Aut(T ) → Aut(T/Z) is an isomorphism and that it

induces an isomorphism Out(T )→ Out(T/Z).
The elements of Inndiag(T/Z) \ Inn(T/Z) are said to be the (non-trivial) diagonal automor-

phisms of T/Z. An automorphism of T/Z is called a field automorphism if it is conjugate to φi for
some 1 ≤ i < f . The automorphisms of the form αι, where α ∈ Inndiag(T/Z), are said to be the
graph automorphisms of T/Z. An automorphism of T/Z is said to be a graph-field automorphism
if it is conjugate to an automorphism of the form φiι for some 1 ≤ i < f . We remark that these
definitions are particular cases of more general definitions, see [48, Chapter 10].

Proposition 3.39. Let q be a nontrivial prime power, and let n ≥ 2. Then Out(PSLn(q)) is
2-nilpotent.

Proof. From the above remarks, it is easy to see that Out(PSLn(q)) is supersolvable. By [38,
Lemma 2.4 (4)], any supersolvable finite group is 2-nilpotent, and so the proposition follows. �

The following proposition also follows from the above remarks.

Proposition 3.40. Let n ≥ 2 be a natural number. Then Out(SLn(3)) is a 2-group.

3.8. Automorphisms of (P )SUn(q). Let p be a prime number, f be a positive integer and n ≥ 3
be a natural number. Set q := pf and T := SUn(q). We now briefly describe the structure of
Aut(T/Z), where Z ≤ Z(T ), referring to [20] and [17, Section 2.3] for further details.

Let Inndiag(T ) := AutGUn(q)(SUn(q)). It is rather easy to note that

Inndiag(T )/Inn(T ) ∼= C(n,q+1).

The map

φ : T → T, (aij) 7→ (aij
p)

is an automorphism of T with order 2f . One can check that φ normalizes Inndiag(T ). Set

PΓUn(q) := Inndiag(T )〈φ〉.

It is rather easy to note that 〈φ〉∩Inndiag(T ) = 1, so that PΓUn(q) is the inner semidirect product
of Inndiag(T ) and 〈φ〉. Note that

PΓUn(q)/Inndiag(T ) ∼= C2f .

Now let Z be a central subgroup of T . It can be easily checked that the natural homomorphism
Aut(T ) → Aut(T/Z) is injective. The image of Inndiag(T ) under this homomorphism will be
denoted by Inndiag(T/Z). By abuse of notation, we denote the image of PΓUn(q) in Aut(T/Z)
again by PΓUn(q) and the image of φ again by φ.

With this notation, we have

Aut(T/Z) = PΓUn(q).

Note that the natural homomorphism Aut(T )→ Aut(T/Z) is an isomorphism and that it induces
an isomorphism Out(T )→ Out(T/Z).

The elements of Inndiag(T/Z) \ Inn(T/Z) are said to be the (non-trivial) diagonal automor-
phisms of T/Z. An automorphism of T/Z is called a field automorphism if it is conjugate to φi

for some 1 ≤ i < 2f such that φi has odd order. The automorphisms of the form αφi, where φi

has even order and α ∈ Inndiag(T/Z), are said to be the graph automorphisms of T/Z. There are
no graph-field automorphisms of T/Z.

Proposition 3.41. Let q be a nontrivial prime power, and let n ≥ 3. Then Out(PSUn(q)) is
2-nilpotent.
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Proof. We see from the above remarks that Out(PSUn(q)) is supersolvable. So Out(PSUn(q)) is
2-nilpotent by [38, Lemma 2.4 (4)]. �

The following proposition also follows from the above remarks.

Proposition 3.42. Let n ≥ 3 be a natural number. Then Out(SUn(3)) is a 2-group.

3.9. Some lemmas. We now prove several results on the automorphism groups of (P )SLn(q)
and (P )SUn(q), where n ≥ 2 and q is a nontrivial odd prime power.

Lemma 3.43. Let q be a nontrivial odd prime power. Also, let T := SL2(q) and S ∈ Syl2(T ).
Suppose that α and β are 2-elements of Aut(T ) such that Sα = S = Sβ and α|S,S = β|S,S. Then
α = β.

Proof. Let γ := αβ−1 ∈ CAut(T )(S). We have CInndiag(T )(S) = 1 by [29, Lemma 4.10.10]. There-

fore, it suffices to show that γ ∈ Inndiag(T ). Clearly, the images of α and β−1 in Aut(T )/Inndiag(T )
are 2-elements of Aut(T )/Inndiag(T ). Since Aut(T )/Inndiag(T ) is abelian,

γ · Inndiag(T ) = (α · Inndiag(T )) · (β−1 · Inndiag(T ))

is still a 2-element of Aut(T )/Inndiag(T ). By [29, Lemma 4.10.10], CAut(T )(S) is a 2′-group, and
so γ has odd order. Therefore, γ · Inndiag(T ) has odd order. It follows that γ ∈ Inndiag(T ), as
required. �

Lemma 3.44. Let q = pf , where p is an odd prime and f is a positive integer. Let T := PSL2(q),
and let α be an involution of Aut(T ). Suppose that CT (α) has a 2-component K. Then we have

2 | f , (f, p) 6= (2, 3) and K ∼= PSL2(p
f
2 ). In particular, K is a component of CT (α).

Proof. Note that CT (α) ∼= CInn(T )(α).
Assume that α ∈ Inndiag(T ). Noticing that Inndiag(T ) ∼= PGL2(q), we see from Lemma

3.3 that CInndiag(T )(α) is solvable. Thus CT (α) ∼= CInn(T )(α) is solvable, and CT (α) has no 2-
components, a contradiction to the choice of α.

So we have α 6∈ Inndiag(T ). By the structure of Aut(PSL2(q)) and since α has order 2, we
can write α as a product of an inner-diagonal automorphism and a field automorphism of order
2. In particular, f must be even. Consulting [29, Proposition 4.9.1 (d)], we see that α itself is a
field automorphism. So we can apply [29, Proposition 4.9.1 (b)] to conclude that CInndiag(T )(α) ∼=
Inndiag(PSL2(p

f
2 )) ∼= PGL2(p

f
2 ). Consequently, K is isomorphic to a 2-component of PGL2(p

f
2 ).

It follows that (f, p) 6= (2, 3) and K ∼= PSL2(p
f
2 ). �

Before we state the next lemma, we introduce some notational conventions for adjoint Chevalley
groups. Given a nontrivial prime power q, we denote A1(q) also by B1(q) and by C1(q). Moreover,
B2(q) will be also denoted by C2(q), and A3(q) will be also denoted by D3(q). We also set
D2(q) := A1(q)×A1(q) and 2D2(q) := A1(q2).

Lemma 3.45. Let q = pf , where p is an odd prime and f is a positive integer. Let n ≥ 3 be a
natural number and ε ∈ {+,−}. Let T := PSLεn(q), and let α be an involution of Aut(T ). Suppose
that CT (α) has a 2-component K. Then K is in fact a component, and one of the following holds:

(i) K ∼= SLεi (q) for some 2 ≤ i < n, where i > 2 if q = 3;
(ii) n is even, and K is isomorphic to a nontrivial quotient of SLn

2
(q2);

(iii) ε = +, f is even, K ∼= PSLn(p
f
2 ) or K ∼= PSUn(p

f
2 );

(iv) q 6= 3, n = 3 or 4, and K ∼= PSL2(q);
(v) n is odd, n ≥ 5 and K ∼= Bn−1

2
(q);

(vi) n is even and K ∼= Cn
2
(q);

(vii) n is even, n ≥ 6 and K ∼= Dn
2
(q);
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(viii) n is even, n ≥ 6 and K ∼= 2Dn
2
(q).

Here, the (twisted) Chevalley groups appearing in (v)-(viii) are adjoint.

Proof. It can be shown that any involution of Aut(T ) is an inner-diagonal automorphism, a field
automorphism, a graph automorphism, or a graph-field automorphism (see [17, Section 3.1.3] or
[29, Section 4.9]).

Case 1: α ∈ Inndiag(T ), or α is a graph automorphism.

Set C∗ := CInndiag(T )(α) and L∗ := Op
′
(C∗). One can see from [29, Theorem 4.2.2 and Table

4.5.1] that C∗/L∗ is solvable and that one of the following holds:

(1) L∗ is the central product of two subgroups isomorphic to SLεi (q) and SLεn−i(q) for some
natural number i with 1 ≤ i ≤ n

2 ,

(2) n is even and L∗ is isomorphic to a nontrivial quotient of SLn
2
(q2),

(3) n is odd and L∗ ∼= Bn−1
2

(q),

(4) n is even and L∗ ∼= Cn
2
(q),

(5) n is even and L∗ ∼= Dn
2
(q),

(6) n is even and L∗ ∼= 2Dn
2
(q),

where the (twisted) Chevalley groups appearing in the last four cases are adjoint. Since CT (α) is
isomorphic to CInn(T )(α) E C∗, we have that K is isomorphic to a 2-component of C∗ and thus
isomorphic to a 2-component of L∗. Therefore, one of the conditions (i)-(viii) is satisfied.

Case 2: α is a field automorphism or a graph-field automorphism.
Again, let C∗ := CInndiag(T )(α). Since the field automorphisms of PSUn(q) have odd order and

PSUn(q) has no graph-field automorphisms, we have ε = +. Also, f is even since α is a field
automorphism or a graph-field automorphism of order 2. From [29, Proposition 4.9.1 (a), (b)],

we see that C∗ ∼= PGLn(p
f
2 ) if α is a field automorphism and that C∗ ∼= PGUn(p

f
2 ) if α is a

graph-field automorphism. Since K is isomorphic to a 2-component of C∗, it follows that (iii) is
satisfied. �

Corollary 3.46. Let q = pf , where p is an odd prime and f is a positive integer. Let n ≥ 2 be a
natural number and ε ∈ {+,−}. Let Z be a central subgroup of SLεn(q) and let T := SLεn(q)/Z.
Let α be an involution of Aut(T ), and let K be a 2-component of CT (α). Then the following hold:

(i) K is a component of CT (α), and K/Z(K) is a known finite simple group.
(ii) K/Z(K) 6∼= M11.

(iii) Assume that K/Z(K) ∼= PSLε
∗
k (q∗) for some positive integer 2 ≤ k ≤ n, some nontrivial

odd prime power q∗ and some ε∗ ∈ {+,−}. Then one of the following holds:
(a) q∗ = q;
(b) q∗ = q2, n ≥ 4 is even, k = n

2 , and ε∗ = + if n ≥ 6;

(c) f is even, k = n, q∗ = p
f
2 .

Proof. Set T := T/Z(T ) ∼= PSLεn(q). Let α be the automorphism of T induced by α.

Clearly, K is a 2-component of CT (α). It is easy to note that CT (α) is a normal subgroup of
CT (α). So K is a 2-component of CT (α). Lemmas 3.44 and 3.45 imply that K is a component of

CT (α) and that K/Z(K) is a known finite simple group. Applying [37, 6.5.1], we conclude that
K ′ is a component of CT (α). We have K = K ′ since K is a 2-component of CT (α), and so it
follows that K is a component of CT (α). Also, K/Z(K) ∼= K/Z(K), so that K/Z(K) is a known
finite simple group. Hence (i) holds.

If K/Z(K) ∼= M11, then K/Z(K) ∼= M11, which is not possible by Lemmas 3.44 and 3.45. So
(ii) holds.

Suppose that K/Z(K) ∼= PSLε
∗
k (q∗) for some positive integer 2 ≤ k ≤ n, some nontrivial odd

prime power q∗ and some ε∗ ∈ {+,−}. By Lemmas 3.44 and 3.45, one of the following holds:
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(1) K/Z(K) ∼= PSLεi (q) for some 2 ≤ i < n;

(2) n is even and K/Z(K) is isomorphic to PSLn
2
(q2);

(3) f is even, K ∼= PSLn(p
f
2 ) or PSUn(p

f
2 );

(4) q 6= 3, n = 3 or 4, K ∼= PSL2(q);
(5) n is odd, n ≥ 5, K ∼= Bn−1

2
(q);

(6) n is even, n ≥ 4, K ∼= Cn
2
(q);

(7) n is even, n ≥ 6, K ∼= Dn
2
(q);

(8) n is even, n ≥ 6, K ∼= 2Dn
2
(q).

Here, the (twisted) Chevalley groups appearing in (5)-(8) are adjoint. On the other hand, we have
K/Z(K) ∼= PSLε

∗
k (q∗). Now, if (1) holds, then PSLε

∗
k (q∗) ∼= PSLεi (q) for some 2 ≤ i < n, and

[48, Theorem 37] shows that this is only possible when q∗ = q, so that (a) holds. Similarly, if (2)
holds, then we have (b). Moreover, (3) implies (c) and (4) implies (a). As Theorem [48, Theorem
37] shows, the cases (5) and (6) cannot occur, while (7) and (8) can only occur when n = 6. As
above, one can see that if n = 6 and (7) or (8) holds, then we have (a). �

Lemma 3.47. Let n ≥ 3 and ε ∈ {+,−}. Then SLεn(3) is locally balanced (in the sense of
Definition 2.7).

Proof. Set T := SLεn(3). Let H be a subgroup of Aut(T ) containing Inn(T ), and let x be an
involution of H. It is enough to show that O(CH(x)) = 1.

Assume that O(CH(x)) 6= 1. Then x ∈ Inndiag(T ) by [29, Theorem 7.7.1]. By Propositions
3.40 and 3.42, Out(T ) is a 2-group. This implies O(CH(x)) = O(CInn(T )(x)) = O(CInndiag(T )(x)).
Since x is an involution of Inndiag(T ) ∼= PGLεn(3), we have O(CInndiag(T )(x)) = 1 by Corollary
3.9. Thus O(CH(x)) = 1. This contradiction completes the proof. �

Lemma 3.48. Let n ≥ 3 be a natural number, let q be a nontrivial odd power, and let ε ∈ {+,−}.
Then any non-trivial quotient of SLεn(q) is locally 2-balanced (in the sense of Definition 2.7).

Proof. By [25, Theorem 4.61] or [29, Theorem 7.7.4], PSLεn(q) is locally 2-balanced. Let K
be a non-trivial quotient of SLεn(q). As we have seen, there is an isomorphism Aut(K) →
Aut(PSLεn(q)) mapping Inn(K) to Inn(PSLεn(q)). So the local 2-balance of K follows from the
local 2-balance of PSLεn(q). �

Lemma 3.49. Let q be a nontrivial odd prime power and n ≥ 4 be a natural number. Let
Z ≤ Z(SLn(q)) and T := SLn(q)/Z. Let K1 be the image of{(

A
In−2

)
: A ∈ SL2(q)

}
in T , and let K2 be the image of {(

I2

B

)
: B ∈ SLn−2(q)

}
in T . Let α be an automorphism of T with odd order such that α normalizes K1 and centralizes
K2. Then α|K1,K1 is an inner automorphism.

Proof. By hypothesis, q = pf for some odd prime number p and some positive integer f . We have
α ∈ PΓLn(q) since α has odd order and |Aut(T )/PΓLn(q)| = 2. So there are some m ∈ GLn(q)
and some 1 ≤ r ≤ f such that, for each element (aij) of SLn(q), α maps (aij)Z to ((aij)

pr)mZ.
Let x be the image of diag(−1,−1, 1, . . . , 1) ∈ SLn(q) in T . Then x is the unique involution of

K1, and so we have xα = x. This easily implies that

m =

(
m1

m2

)
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for some m1 ∈ GL2(q) and some m2 ∈ GLn−2(q).
Since α centralizes K2, we have ((aij)

pr)m2 = (aij) for all (aij) ∈ SLn−2(q). Therefore, the
automorphism SLn−2(q) → SLn−2(q), (aij) 7→ (aij)

pr is an element of Inndiag(SLn−2(q)). This
implies r = f .

Thus, under the isomorphism Aut(SL2(q))→ Aut(K1) induced by the canonical isomorphism
SL2(q)→ K1, the automorphism α|K1,K1 of K1 corresponds to the inner-diagonal automorphism
α̃ : SL2(q) → SL2(q), a 7→ am1 , and this automorphism has odd order since α has odd order.
The index of Inn(SL2(q)) in Inndiag(SL2(q)) is 2, and so it follows that α̃ ∈ Inn(SL2(q)). Con-
sequently, α|K1,K1 ∈ Inn(K1). �

By using similar arguments as in the proof of Lemma 3.49, one can prove the following lemma.

Lemma 3.50. Let q be a nontrivial odd prime power and n ≥ 4 be a natural number. Let
Z ≤ Z(SUn(q)) and T := SUn(q)/Z. Let K1 be the image of{(

A
In−2

)
: A ∈ SU2(q)

}
in T , and let K2 be the image of {(

I2

B

)
: B ∈ SUn−2(q)

}
in T . Let α be an automorphism of T with odd order such that α normalizes K1 and centralizes
K2. Then α|K1,K1 is an inner automorphism.

Our next goal is to prove the following lemma.

Lemma 3.51. Let q and q∗ be nontrivial odd prime powers. Let L be a group isomorphic to
SL2(q∗). Let Q be a Sylow 2-subgroup of L. Moreover, let V be a Sylow 2-subgroup of GL2(q)
and V0 := V ∩ SL2(q). Suppose that there is a group isomorphism ψ : V0 → Q. Let v1, v2, v3 be
elements of V such that v3 = v1v2 and such that the square of any element of {v1, v2, v3} lies in
Z(GL2(q)). For each i ∈ {1, 2, 3}, let αi be a 2-element of Aut(L) normalizing Q such that

αi|Q,Q = ψ−1(cvi |V0,V0)ψ.

Then we have
3⋂
i=1

O(CL(αi)) = 1.

To prove Lemma 3.51, we need to prove some other lemmas.

Lemma 3.52. Let q be a nontrivial odd prime power with q ≡ 1 mod 4, and let k ∈ N with
(q− 1)2 = 2k. Let G be a group isomorphic to SL2(q) and Q ∈ Syl2(G). Then the following hold:

(i) There are elements a, b ∈ Q such that ord(a) = 2k, ord(b) = 4, ab = a−1 and b2 = a2k−1
.

(ii) Let a and b be as in (i). Then there is a group isomorphism ϕ : G→ SL2(q) such that

aϕ =

(
λ 0
0 λ−1

)
for some λ ∈ F∗q with order 2k and

bϕ =

(
0 1
−1 0

)
.

Proof. (i) follows from Lemma 3.12.
We now prove (ii). Assume that k ≥ 3. By Lemma 3.10 (i),{(

µ 0
0 µ−1

)
: µ is a 2-element of F∗q

}〈(
0 1
−1 0

)〉
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is a Sylow 2-subgroup of SL2(q). Choose a group isomorphism ψ : G→ SL2(q) such that Qψ = R.
Clearly, since k ≥ 3, Q has only one cyclic subgroup of order 2k. This implies that

aψ =

(
λ 0
0 λ−1

)
for some λ ∈ F∗q with order 2k. Since b 6∈ 〈a〉, we have

bψ =

(
0 µ
−µ−1 0

)
for some 2-element µ of F∗q . Composing ψ with the automorphism

SL2(q)→ SL2(q), A 7→
(
µ−1 0

0 1

)
A

(
µ 0
0 1

)
we get a group isomorphism ϕ : G → SL2(q) with the desired properties. This completes the
proof of (ii) for the case k ≥ 3.

Assume now that k = 2. Let ψ : G → SL2(q) be a group isomorphism. We have (aψ)2 = −I2

since −I2 is the only involution of SL2(q) and ord(a2) = 2. So, by Lemma 3.3, we may assume
that

aψ =

(
λ 0
0 λ−1

)
for some λ ∈ F∗q with order 4. Since ab = a−1, we have(

λ 0
0 λ−1

)bψ
=

(
λ−1 0

0 λ

)
.

This implies that

bψ =

(
0 µ
−µ−1 0

)
for some µ ∈ F∗q . Again we may compose ψ with a suitable diagonal automorphism of SL2(q) to
obtain a group isomorphism ϕ : G→ SL2(q) with the desired properties. �

By using similar arguments as in the proof of Lemma 3.52, one can prove the following lemma.

Lemma 3.53. Let q be a nontrivial odd prime power with q ≡ 3 mod 4, and let s ∈ N with
(q + 1)2 = 2s. Let G be a group isomorphic to SU2(q) and Q ∈ Syl2(G). Then the following hold:

(i) There are elements a, b ∈ Q such that ord(a) = 2s, ord(b) = 4, ab = a−1 and b2 = a2s−1
.

(ii) Let a and b be as in (i). Then there is a group isomorphism ϕ : G→ SU2(q) such that

aϕ =

(
λ 0
0 λ−1

)
for some λ ∈ F∗q2 with order 2s and

bϕ =

(
0 1
−1 0

)
.

Lemma 3.54. Let q be a nontrivial odd prime power with q ≡ 1 mod 4. Let ρ be a generating
element of the Sylow 2-subgroup of F∗q, and let

a :=

(
ρ

ρ−1

)
, b :=

(
0 1
−1 0

)
.

Let V be the Sylow 2-subgroup of GL2(q) given by Lemma 3.10 (i), and let v, w ∈ V such that
v2, w2, (vw)2 ∈ Z(GL2(q)). Then one of the following holds:

(i) {v, w, vw} ∩ Z(GL2(q)) 6= ∅.
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(ii) There exist r, s ∈ {v, w, vw} with ar = a, br = b3 and as = a−1.

Proof. It is easy to note that (i) holds if v and w are diagonal matrices.
Suppose now that v or w is not a diagonal matrix. If neither v nor w is a diagonal matrix, then

vw is a diagonal matrix. So there exist r, s ∈ {v, w, vw} such that

r =

(
λ1

λ2

)
, s =

(
µ1

µ2

)
,

where λ1, λ2, µ1 and µ2 are 2-elements of F∗q .
If λ1 = λ2, then (i) holds. Assume now that λ1 6= λ2. Then λ2 = −λ1 since r2 ∈ Z(GL2(q)),

and a direct calculation shows that ar = a, br = b3 and as = a−1. �

Lemma 3.55. Let q be a nontrivial odd prime power with q ≡ 3 mod 4, and let k ∈ N with
(q + 1)2 = 2k. Let V be a Sylow 2-subgroup of GL2(q).

(i) There exist x, y ∈ V with ord(x) = 2k+1, ord(y) = 2 and xy = x−1+2k . We have V ∩
SL2(q) = 〈x2〉〈xy〉.

(ii) Let x and y be as above, and let a := x2 and b := xy. Let v, w ∈ V with v2, w2, (vw)2 ∈
Z(GL2(q)). Then one of the following holds:
(a) {v, w, vw} ∩ Z(GL2(q)) 6= ∅.
(b) There exist r, s ∈ {v, w, vw} such that ar = a, br = b3 and as = a−1.

Proof. (i) follows from Lemma 3.16 (i), (ii).

We now prove (ii). We have Z(V ) = 〈x2k〉 by Lemma [24, Chapter 5, Theorem 4.3]. Thus

Z(GL2(q)) ∩ V = 〈x2k〉. Clearly, {v, w, vw} ∩ 〈x〉 ⊆ 〈x2k−1〉.
If v, w ∈ 〈x〉, then v, w ∈ 〈x2k−1〉, and it easily follows that (a) holds.
Assume now that v 6∈ 〈x〉 or w 6∈ 〈x〉. If neither v nor w lies in 〈x〉, then vw ∈ 〈x〉. Consequently,

{v, w, vw} has an element r of the form x`2
k−1

for some 1 ≤ ` ≤ 4 and an element s of the form
xiy for some 1 ≤ i ≤ 2k+1. If ` = 2 or 4, then (a) holds. Assume now that ` = 1 or 3. It is clear
that ar = a. Furthermore, we have

br = (xy)x
`2k−1

= xyx
`2k−1

= xx−`2
k−1

yx`2
k−1

y2

= x1−`2k−1
(xy)`2

k−1
y

= x1−`2k−1
(x−1+2k)`2

k−1
y

= x1−`2k+`22k−1
y

= x1−`2ky

` odd
= x1+2ky.

On the other hand, we have

b3 = (xy)3 = x2kxy = x1+2ky.

Consequently, br = b3. Finally, we also have

as = (x2)x
iy = (x2)y = (xy)2 = (x−1+2k)2 = x−2 = a−1.

Thus (b) holds. �
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Proof of Lemma 3.51. If αj |Q,Q = idQ for some j ∈ {1, 2, 3}, then αj = idL by Lemma 3.43, which
implies that

3⋂
i=1

O(CL(αi)) ≤ O(CL(αj)) = O(L) = 1.

Suppose now that αi acts nontrivially on Q for all i ∈ {1, 2, 3}. Let m ∈ N with |Q| = 2m. Using
Lemma 3.54 (together with Sylow’s theorem) and Lemma 3.55, we see that there exist a, b ∈ Q
and i, j ∈ {1, 2, 3} such that the following hold:

(i) ord(a) = 2m−1, ord(b) = 4, ab = a−1, b2 = a2m−2
;

(ii) aαi = a, bαi = b3, aαj = a−1.

Clearly, bαj = a`b for some 1 ≤ ` ≤ 2m−1.
Assume that q∗ ≡ 1 mod 4. By Lemma 3.52, there is group isomorphism ϕ : L→ SL2(q∗) with

aϕ =

(
λ 0
0 λ−1

)
for some generator λ of the Sylow 2-subgroup of (Fq∗)∗ and

bϕ =

(
0 1
−1 0

)
.

Set βk := ϕ−1αkϕ for k ∈ {1, 2, 3}. Let i and j be as in (ii). Also, let

mi :=

(
1
−1

)
.

Then βi and cmi normalize Qϕ, and we have βi|Qϕ,Qϕ = cmi |Qϕ,Qϕ . Applying Lemma 3.43, we
conclude that βi = cmi .

Clearly, (
0 1
−1 0

)βj
=

(
0 µ
−µ−1 0

)
for some 2-element µ of (Fq∗)∗. Set

mj :=

(
0 µ
−1 0

)
.

Then βj and cmj normalize Qϕ, and we have βj |Qϕ,Qϕ = cmj |Qϕ,Qϕ . Applying Lemma 3.43, we
conclude that βj = cmj .

It follows that CSL2(q∗)(βi)∩CSL2(q∗)(βj) = Z(SL2(q∗)). So we have CL(αi)∩CL(αj) = Z(L),
and this implies that

3⋂
k=1

O(CL(αk)) = 1

since |Z(L)| = 2.
If q∗ ≡ 3 mod 4, then a very similar argumentation shows that the same conclusion holds.

Here, one has to use Lemma 3.53 instead of Lemma 3.52, together with the fact that SL2(q∗) ∼=
SU2(q∗). �

We bring this section to a close with a proof of the following lemma, which will play an important
role in the proof of Theorem B.

Lemma 3.56. Let q be a nontrivial odd prime power, ε ∈ {+,−} and n ≥ 2 a natural number.
Set T := Inn(PSLεn(q)). Let A be a subgroup of Aut(PSLεn(q)) such that T ≤ A and such that
the index of T in A is odd. Let S be a Sylow 2-subgroup of T . Then we have FS(T ) = FS(A).

To prove Lemma 3.56, we need to prove some other lemmas first.
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Lemma 3.57. Let q be a nontrivial odd prime power, ε ∈ {+,−}, and let r be positive integer.
Also, let W be a Sylow 2-subgroup of GLε2r(q). Then Aut(W ) is a 2-group.

Proof. We proceed by induction over r.
Suppose that r = 1. If q ≡ −ε mod 4, then W is semidihedral by Lemmas 3.10 and 3.11, and

so Aut(W ) is a 2-group by [19, Proposition 4.53]. If q ≡ ε mod 4, then W ∼= C2k o C2 for some
positive integer k by Lemmas 3.10 and 3.11, and so Aut(W ) is a 2-group as a consequence of [22,
Theorem 2].

Assume now that r > 1 and that the lemma is true with r− 1 instead of r. Let W0 be a Sylow
2-subgroup of GLε2r−1(q). Hence, Aut(W0) is a 2-group. By Lemma 3.14, we have W ∼= W0 o C2.
Applying [22, Theorem 2], we conclude that Aut(W ) is a 2-group. �

Lemma 3.58. Let q be a nontrivial odd prime power, ε ∈ {+,−}, and let n ≥ 3 be a natural
number. Let T := SLεn(q), and let S be a Sylow 2-subgroup of Inndiag(T ). Then AutPΓLεn(q)(S)
is a 2-group.

Proof. Let α ∈ NPΓLεn(q)(S). It suffices to show that cα|S,S is a 2-automorphism of S.
Let 0 ≤ r1 < · · · < rt such that n = 2r1 + · · ·+ 2rt . Let Wi ∈ Syl2(GLε2ri (q)) for all 1 ≤ i ≤ t.

By Lemma 3.15, 
A1

. . .

At

 : Ai ∈Wi


is a Sylow 2-subgroup of GLεn(q).

Clearly, {cw|T,T | w ∈W} is a Sylow 2-subgroup of Inndiag(T ). Without loss of generality, we
assume that S = {cw|T,T | w ∈W}.

Let p be the odd prime number and f be the positive integer with q = pf . Since α ∈ PΓLεn(q),
there exist some m ∈ GLεn(q) and some natural number `, where 1 ≤ ` ≤ f if ε = + and 1 ≤ ` ≤ 2f
if ε = −, such that

(aij)
α = ((aij)

p`)m

for all (aij) ∈ T .
Let

α : GLεn(q)→ GLεn(q), (aij) 7→ ((aij)
p`)m.

It is easy to note that α is an automorphism ofGLεn(q). Using this, one can see that α−1(cw|T,T )α =
cwα |T,T for all w ∈W .

Let w ∈W . Since α normalizes S, there is some w̃ ∈W with cwα |T,T = α−1(cw|T,T )α = cw̃|T,T .
It follows that wα ∈ w̃Z(GLεn(q)) ⊆ WZ(GLεn(q)). This implies wα ∈ W since W is the unique
Sylow 2-subgroup of WZ(GLεn(q)). In particular, α induces an automorphism of W .

Let

di :=


I2r1

. . .

−I2ri

. . .

I2rt


for each 1 ≤ i ≤ t. Then di is a central involution of W for each 1 ≤ i ≤ t. So we have that
(di)

α = (di)
m is a central involution of W for each 1 ≤ i ≤ t. As we see from Lemma 3.17, this

already implies that (di)
m = di for each 1 ≤ i ≤ t. So there is some mi ∈ GLε2ri (q) for each

1 ≤ i ≤ t such that

m =

m1

. . .

mt

 .
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Now
Wr →Wr, (aij) 7→ ((aij)

p`)mi

is an automorphism of Wr for each 1 ≤ r ≤ t. Applying Lemma 3.57, we conclude that α|W,W is
a 2-automorphism of W . Since α−1(cw|T,T )α = cwα |T,T for all w ∈ W , it follows that cα|S,S is a
2-automorphism of S, as required. �

Corollary 3.59. Let q be a nontrivial odd prime power, ε ∈ {+,−}, and let n ≥ 3 be a natural
number. Let T := PSLεn(q), and let S be a Sylow 2-subgroup of Inndiag(T ). Then AutPΓLεn(q)(S)
is a 2-group.

Lemma 3.60. Let q be a nontrivial odd prime power, ε ∈ {+,−}, and n ≥ 3 be a natural number.
Let S be a Sylow 2-subgroup of SLεn(q)Z(GLεn(q))/Z(GLεn(q)), and let S1 be a Sylow 2-subgroup
of PGLεn(q) containing S. Then NPGLεn(q)(S) = NPGLεn(q)(S1).

Proof. Let T1 be a Sylow 2-subgroup of GLεn(q)) such that S1 = T1Z(GLεn(q))/Z(GLεn(q)).
Let T := T1 ∩ SLεn(q). Clearly, we have S = TZ(GLεn(q))/Z(GLεn(q)). It is rather easy to
show NPGLεn(q)(S) = NGLεn(q)(T )Z(GLεn(q))/Z(GLεn(q)). By [36, Theorem 1], NGLεn(q)(T ) =
T1CGLεn(q)(T1) ≤ NGLεn(q)(T1). It follows that NPGLεn(q)(S) ≤ NPGLεn(q)(S1). It is clear that
we also have NPGLεn(q)(S1) ≤ NPGLεn(q)(S). �

Corollary 3.61. Let q be a nontrivial odd prime power, ε ∈ {+,−}, and let n ≥ 3 be a natural
number. Let T := PSLεn(q), let S be a Sylow 2-subgroup of Inn(T ), and let S1 be a Sylow 2-
subgroup of Inndiag(T ) containing S. Then NInndiag(T )(S) = NInndiag(T )(S1).

We are now ready to prove Lemma 3.56.

Proof of Lemma 3.56. Assume that n = 2 and q ≡ 3 or 5 mod 8. Then S ∼= C2 × C2 by
Lemma 3.13. There is only one non-nilpotent fusion system on S. Since T and A are not 2-
nilpotent, we have that FS(T ) and FS(A) are not nilpotent (see [39, Theorem 1.4]). It follows
that FS(T ) = FS(A).

From now on, we assume that either n ≥ 3, or n = 2 and q ≡ 1 or 7 mod 8. Let P,Q ≤ S
and a ∈ A such that P a ≤ Q. We are going to show that ca|P,Q is a morphism in FS(T ). By
the Frattini argument, we have a = wu for some w ∈ NA(S) and some u ∈ T . We prove that
cw|S,S ∈ Inn(S). This clearly implies that ca|P,Q is a morphism in FS(T ).

Suppose that n = 2. Then S is dihedral of order at least 8 by Lemma 3.13, and so Aut(S) is a
2-group by [19, Proposition 4.53]. This implies that AutA(S) = Inn(S), whence cw|S,S ∈ Inn(S).

Suppose now that n ≥ 3. Let S1 be a Sylow 2-subgroup of Inndiag(PSLεn(q)) containing S.
Since T has odd index in A, we have that A ≤ PΓLεn(q). By the Frattini argument, w = w1w2

for some w1 ∈ NPΓLεn(q)(S1) and some w2 ∈ Inndiag(PSLεn(q)). Since w1 normalizes both S1

and T , we have that w1 normalizes S. And since w = w1w2 normalizes S, we also have that w2

normalizes S. So w2 normalizes S1 by Corollary 3.61. Consequently, w = w1w2 ∈ NPΓLεn(q)(S1).
By Corollary 3.59, cw|S1,S1 is a 2-automorphism of S1. So cw|S,S is a 2-automorphism of S. Since
S ∈ Syl2(A) and w ∈ A, this implies that cw|S,S ∈ Inn(S), as required. �

4. The case n ≤ 5

In this section, we verify Theorem A for the case n ≤ 5.

Proposition 4.1. Let q be a nontrivial odd prime power, and let G be a finite simple group. Then
the following are equivalent:

(i) the 2-fusion system of G is isomorphic to the 2-fusion system of PSL2(q);
(ii) the Sylow 2-subgroups of G are isomorphic to those of PSL2(q);
(iii) G ∼= PSLε2(q∗) for some ε ∈ {+,−} and some odd prime power q∗ ≥ 5 with εq∗ ∼ q, or

|PSL2(q)|2 = 8 and G ∼= A7.
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In particular, Theorem A holds for n = 2.

Proof. The implication (i) ⇒ (ii) is clear.
(ii)⇒ (iii): Assume that the Sylow 2-subgroups ofG are isomorphic to those of PSL2(q). Hence,

G has dihedral Sylow 2-subgroups of order 1
2(q− 1)2(q+ 1)2. Applying a result of Gorenstein and

Walter [31, Theorem 1], we may conclude that G ∼= PSL2(q∗) for some odd prime power q∗ ≥ 5, or
G ∼= A7. Suppose that the former holds. Then (q∗−1)2(q∗+1)2 = 2|G|2 = (q−1)2(q+1)2, whence
either q∗ ∼ q or −q∗ ∼ q. Since PSL2(q∗) ∼= PSU2(q∗), this implies that the first statement in
(iii) is satisfied. If G ∼= A7, then |PSL2(q)|2 = |G|2 = 8, so that the second statement in (iii) is
satisfied.

(iii) ⇒ (i): Assume that (iii) holds. Set G1 := G and G2 := PSL2(q). For i ∈ {1, 2}, let
Si ∈ Syl2(Gi) and Fi := FSi(Gi). Clearly, S1 and S2 are dihedral groups of the same order. Let
i ∈ {1, 2}. By [24, Chapter 5, Theorem 4.3], any subgroup of Si is cyclic or dihedral. By [19,
Proposition 4.53], a dihedral subgroup of Si with order greater than 4 cannot be Fi-essential.
Since the automorphism group of a finite cyclic 2-group is itself a 2-group, a cyclic subgroup of
Si cannot be Fi-essential either. So we have that any Fi-essential subgroup of Si is a Klein four
group. Alperin’s fusion theorem [11, Part I, Theorem 3.5] implies that

Fi = 〈AutFi(P ) | P ≤ Si, P ∼= C2 × C2 or P = Si〉Si .
If |Si| = 4, then AutFi(Si) is the unique subgroup of Aut(Si) with order 3, because otherwise
AutFi(Si) = Inn(Si), so that [39, Theorem 1.4] would imply that Gi is 2-nilpotent. If |Si| ≥ 8,
then AutFi(Si) = Inn(Si) since Aut(Si) is a 2-group by [19, Proposition 4.53], and for any Klein
four subgroup P of Si, we have AutFi(P ) = Aut(P ) by [24, Chapter 7, Theorem 7.3]. As S1

∼= S2

and as the preceding observations do not depend on whether i is 1 or 2, we may conclude that
F1
∼= F2, as required. �

Proposition 4.2. Let q be a nontrivial odd prime power, and let G be a finite simple group. Then
the following are equivalent:

(i) the 2-fusion system of G is isomorphic to the 2-fusion system of PSL3(q);
(ii) the Sylow 2-subgroups of G are isomorphic to those of PSL3(q);

(iii) G ∼= PSLε3(q∗) for some ε ∈ {+,−} and some nontrivial odd prime power q∗ with εq∗ ∼ q,
or (q + 1)2 = 4 and G ∼= M11.

In particular, Theorem A holds for n = 3.

Proof. The implication (i) ⇒ (ii) is clear.
(ii) ⇒ (iii): Assume that the Sylow 2-subgroups of G are isomorphic to those of PSL3(q).

Hence, a Sylow 2-subgroup of G is wreathed (i.e. isomorphic to C2k oC2 for some positive integer
k) if q ≡ 1 mod 4, and semidihedral if q ≡ 3 mod 4. Applying work of Alperin, Brauer and
Gorenstein, namely [2, Third Main Theorem] and [3, First Main Theorem], we may conclude that
either G ∼= PSLε3(q∗) for some ε ∈ {+,−} and some nontrivial odd prime power q∗ with εq∗ ≡ q
mod 4, or q ≡ 3 mod 4 and G ∼= M11. If the former holds, then ((q∗ − ε)2)2(q∗ + ε)2 = |G|2 =
((q−1)2)2(q+1)2, and it easily follows that εq∗ ∼ q. IfG ∼= M11, then 16 = |G|2 = ((q−1)2)2(q+1)2

and hence (q + 1)2 = 4.
(iii) ⇒ (i): Assume that (iii) holds. If q ≡ 1 mod 4, then Proposition 3.20 implies that the

2-fusion system of G is isomorphic to the 2-fusion system of PSL3(q). Alternatively, this can be
seen from [19, Proposition 5.87]. Now suppose that q ≡ 3 mod 4. If (q + 1)2 6= 4, then we could
apply Proposition 3.20 again, but we are going to argue in a more elementary way. Let G1 := G
and G2 := PSL3(q). For i ∈ {1, 2}, let Si ∈ Syl2(Gi) and Fi := FSi(Gi). Clearly, S1 and S2

are semidihedral groups of the same order. Let i ∈ {1, 2}. By [24, Chapter 5, Theorem 4.3], any
proper subgroup of Si is cyclic, dihedral or generalized quaternion. By [19, Proposition 4.53],
dihedral subgroups of Si with order greater than 4 and generalized quaternion subgroups of Si
with order greater than 8 cannot be Fi-essential. Since the automorphism group of a finite cyclic
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2-group is itself a 2-group, a cyclic subgroup of Si cannot be Fi-essential either. Alperin’s fusion
theorem [11, Part I, Theorem 3.5] implies that

Fi = 〈AutFi(P ) | P ∼= C2 × C2, P ∼= Q8, or P = Si〉Si .
Since Aut(Si) is a 2-group by [19, Proposition 4.53], we have AutFi(Si) = Inn(Si). From [2, pp.
10-11, Proposition 1], one can see that AutFi(P ) = Aut(P ) for any subgroup P of Si isomorphic
to C2 ×C2 or Q8. As S1

∼= S2 and as the preceding observations do not depend on whether i is 1
or 2, we may conclude that F1

∼= F2, as required. �

The next two lemmas are required to verify Theorem A for the case n = 4.

Lemma 4.3. Let q be an odd prime power with q ≡ 3 mod 8. Assume that G = A10 or A11.
Then the 2-fusion system of G is not isomorphic to the 2-fusion system of PSL4(q).

Proof. Set x := (1 2)(3 4) ∈ G and y := (1 2)(3 4)(5 6)(7 8) ∈ G. Let g ∈ G be an involution.
Then the cycle type of g is either that of x or that of y. So, by [37, 4.3.1], g is conjugate to x or
y in the ambient symmetric group, which easily implies that g is also G-conjugate to x or y. The
involutions x and y are not G-conjugate as they have different cycle types. It follows that G has
precisely two conjugacy classes of involutions with representatives x and y.

By a direct calculation,

S := 〈(1 2 3 4)(9 10), (1 2)(3 4), (5 6 7 8)(9 10), (5 6)(7 8), (1 5)(2 6)(3 7)(4 8)〉
is a Sylow 2-subgroup of G. Another calculation confirms that S has precisely 14 involutions
whose cycle type is that of x and precisely 29 involutions whose cycle type is that of y. So there
are precisely two FS(G)-conjugacy classes of involutions, one of which has 14 elements, while the
other one has 29 elements. In order to prove that FS(G) is not isomorphic to the 2-fusion system
of PSL4(q), we show that the 2-fusion system of PSL4(q) has a conjugacy class of involutions
with precisely 17 elements.

Let W1 be a Sylow 2-subgroup of GL2(q), and let W2 be the Sylow 2-subgroup of GL4(q)
obtained from W1 by the construction given in the last statement of Lemma 3.14. Let W :=
W2 ∩ SL4(q) ∈ Syl2(SL4(q)), and let R be the image of W in PSL4(q). The involutions of W2

are precisely the elements (
a

b

)
and

(
c

c−1

)
,

where a, b, c ∈W1 and max{ord(a), ord(b)} = 2. Bearing in mind that W1 is semidihedral of order
16, which holds because of q ≡ 3 mod 8, we may see from Lemma 3.16 that W has precisely 35
involutions. As one of them is −I4, and as the product of −I4 with an involution of W different
from −I4 is again an involution, we may conclude that R has precisely 17 involutions that are
images of involutions of W . Since any noncentral involution of SL4(q) is SL4(q)-conjugate to a
diagonal matrix having diagonal entries 1,1,−1,−1, we have that all the noncentral involutions
of SL4(q) are SL4(q)-conjugate. Thus the 17 involutions of R induced by involutions of W are
PSL4(q)-conjugate. As an element of PSL4(q) induced by an involution cannot be conjugate to
an element of PSL4(q) not induced by an involution, it follows that there is an FR(PSL4(q))-
conjugacy class of involutions with precisely 17 elements. �

Lemma 4.4. Let q be an odd prime power with q ≡ 5 mod 8. Assume that G = M22, M23 or
McL. Then the 2-fusion system of G is not isomorphic to the 2-fusion system of PSL4(q).

Proof. Let S ∈ Syl2(G) and F := FS(G). Let x be an element of S with order 4 such that 〈x〉 is
fully F-centralized. In other words, we have CS(x) ∈ Syl2(CG(x)). If G = M22 or M23, then by
[1], CG(x) is a 2-group, whence CF (〈x〉) = FCS(x)(CG(x)) = FCS(x)(CS(x)). If G = McL, then
by [1], G has precisely one conjugacy class of elements of order 4, so that all elements of S with
order 4 are F-conjugate.
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Consequently, we either have that CF (〈x〉) is nilpotent for all elements x ∈ S with order 4 such
that 〈x〉 is fully F-centralized, or all elements of S with order 4 are F-conjugate. We are going
to show that the 2-fusion system of PSL4(q) has neither of these properties.

Let λ be an element of F∗q of order 4 and let y be the image of diag(1, 1, λ, λ−1) in PSL4(q).
Clearly, y has order 4. Let R be a Sylow 2-subgroup of PSL4(q) containing a Sylow 2-subgroup
of C := CPSL4(q)(y). Clearly, y ∈ R. Let us denote FR(PSL4(q)) by G. Then 〈y〉 is fully G-
centralized. The centralizer C is not 2-nilpotent since it has a subgroup isomorphic to SL2(q).
So, by [39, Theorem 1.4], CG(〈y〉) = FCR(y)(C) is not nilpotent.

Let m denote the matrix 
0 λ
1 0

0 −λ
1 0

 ∈ SL(4, q).

A direct calculation, using q ≡ 5 mod 8, shows that m has no eigenvalues, whence m is in particular
not diagonalizable. The image of m in PSL4(q) has order 4, but it is not PSL4(q)-conjugate to
y. Therefore, PSL4(q) has more than one conjugacy class of elements with order 4. Thus there
is more than one G-conjugacy class of elements with order 4. �

Proposition 4.5. Let q be a nontrivial odd prime power and let G be a finite simple group. Then
the following are equivalent:

(i) the 2-fusion system of G is isomorphic to the 2-fusion system of PSL4(q);
(ii) G ∼= PSLε4(q∗) for some ε ∈ {+,−} and some nontrivial odd prime power q∗ with εq∗ ∼ q.

In particular, Theorem A holds for n = 4.

Proof. The implication (ii) ⇒ (i) is given by Proposition 3.20.
(i)⇒ (ii): Assume that the 2-fusion system ofG is isomorphic to the 2-fusion system of PSL4(q).

Then the Sylow 2-subgroups of G are isomorphic to those of PSL4(q). Applying Mason’s results
[41, Theorem 1.1 and Corollary 1.3] and [40, Theorems 1.1 and 3.15], the latter together with [29,
Theorem 4.10.5 (f)], we see that one of the following holds:

(1) G ∼= PSLε4(q∗) for some nontrivial odd prime power q∗ and some ε ∈ {+,−} with εq∗ ≡ q
mod 4;

(2) G ∼= A10 or A11, and q ≡ 3 mod 4;
(3) G ∼= M22, M23 or McL, and q ≡ 5 mod 8.

Let q0 be a nontrivial odd prime power, ε0 ∈ {+,−}, and k0, s0 ∈ N such that 2k0 = (q0 − ε0)2

and 2s0 = (q0 + ε0)2. Then we have

|PSLε04 (q0)|2 =
|GLε04 (q0)|2
2k0(4, 2k0)

=
2(|GLε02 (q0)|2)2

2k0(4, 2k0)
=

23k0+2s0+1

(4, 2k0)
.

Let k, s ∈ N such that 2k = (q − 1)2 and 2s = (q + 1)2.
Suppose that (1) holds, and let k∗, s∗ ∈ N such that 2k

∗
= (q∗ − ε)2 and 2s

∗
= (q∗ + ε)2. Then

we have
23k∗+2s∗+1

(4, 2k∗)
= |G|2 =

23k+2s+1

(4, 2k)
.

Since εq∗ ≡ q mod 4, this easily implies εq∗ ∼ q.
Suppose that (2) holds. Then 27 = |G|2 = 23+2s, whence s = 2 and thus q ≡ 3 mod 8. This is

a contradiction to Lemma 4.3. So (2) does not hold.
Also, (3) cannot hold because of Lemma 4.4. �

Proposition 4.6. Let q be a nontrivial odd prime power, and let G be a finite simple group. Then
the following are equivalent:

(i) the 2-fusion system of G is isomorphic to the 2-fusion system of PSL5(q);
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(ii) the Sylow 2-subgroups of G are isomorphic to those of PSL5(q);
(iii) G ∼= PSLε5(q∗) for some nontrivial odd prime power q∗ and some ε ∈ {+,−} with εq∗ ∼ q.

In particular, Theorem A holds for n = 5.

Proof. The implication (i) ⇒ (ii) is clear, and the implication (iii) ⇒ (i) is given by Proposition
3.20.

(ii) ⇒ (iii): Assume that the Sylow 2-subgroups of G are isomorphic to those of PSL5(q).
Applying work of Mason [42, Theorem 1.1], it follows that G ∼= PSLε5(q∗) for some ε ∈ {+,−}
and some nontrivial odd prime power q∗. In view of Lemma 3.15, it is easy to see that a Sylow
2-subgroup of G is isomorphic to a Sylow 2-subgroup of GLε4(q∗), while a Sylow 2-subgroup of
PSL5(q) is isomorphic to a Sylow 2-subgroup of GL4(q). Now it is easy to deduce from Lemmas
3.10, 3.11 and 3.14 that a Sylow 2-subgroup of G has a center of order (q∗ − ε)2, while a Sylow
2-subgroup of PSL5(q) has a center of order (q − 1)2. It follows that (q∗ − ε)2 = (q − 1)2. Let
k, s, k∗, s∗ ∈ N with 2k = (q − 1)2, 2

s = (q + 1)2, 2
k∗ = (q∗ − ε)2 and 2s

∗
= (q∗ + ε)2. Then

24k∗+2s∗+1 = |GLε4(q∗)|2 = |G|2 = |GL4(q)|2 = 24k+2s+1.

Since 2k
∗

= 2k, we thus have k = k∗ and s = s∗. This implies εq∗ ∼ q. �

5. The case n ≥ 6: Preliminary discussion and notation

Given a natural number k ≥ 6, we say that P (k) is satisfied if whenever q0 is a nontrivial odd
prime power and H is a finite simple group satisfying (CK) and realizing the 2-fusion system of
PSLk(q0), we have H ∼= PSLεk(q

∗) for some nontrivial odd prime power q∗ and some ε ∈ {+,−}
with εq∗ ∼ q0.

In order to establish Theorem A for n ≥ 6, we are going to prove by induction that P (k) is
satisfied for all k ≥ 6. From now on until the end of Section 8, we will assume the following
hypothesis.

Hypothesis 5.1. Let n ≥ 6 be a natural number such that P (k) is satisfied for all natural
numbers k with 6 ≤ k < n, and let q be a nontrivial odd prime power. Moreover, let G be a finite
group satisfying the following properties:

(i) G realizes the 2-fusion system of PSLn(q);
(ii) O(G) = 1;
(iii) G satisfies (CK).

We will prove the following theorem.

Theorem 5.2. There is a normal subgroup G0 of G isomorphic to a nontrivial quotient of SLεn(q∗)
for some nontrivial odd prime power q∗ and some ε ∈ {+,−} with εq∗ ∼ q. In particular, P (n) is
satisfied.

The proof of Theorem 5.2 will occupy Sections 5-8. In this section, we introduce some notation
and prove some preliminary results needed for the proof.

For each A ⊆ {1, . . . , n} of even order, let tA be the image of the diagonal matrix diag(d1, . . . , dn)
in PSLn(q), where

di =

{
−1 if i ∈ A
1 if i 6∈ A

for each 1 ≤ i ≤ n. If i is an even natural number with 2 ≤ i < n and A = {n − i + 1, . . . , n},
then we write ti for tA. We denote t2 by t, and we write u for t{1,2}.

We assume ρ to be an element of F∗q of order (n, q − 1). If ρ is a square in Fq, then we assume

µ to be a fixed element of Fq with ρ = µ2.
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If n is even, ρ is a square in Fq, and i is an odd natural number with 1 ≤ i < n, then(
µIn−i

−µIi

)
is an element of SLn(q) by Proposition 3.5, and we will denote its image in PSLn(q) by ti.

If n is even and ρ is a non-square element of Fq, then we denote the matrix(
In/2

ρIn/2

)
by w̃, and if w̃ ∈ SLn(q), then we use w to denote its image in PSLn(q).

Note that, by Proposition 3.5, any involution of PSLn(q) is conjugate to ti for some 1 ≤ i < n
such that ti is defined, or to w (if defined).

Next, we construct a Sylow 2-subgroup of CPSLn(q)(t) containing some “nice” elements of
PSLn(q). Take a Sylow 2-subgroup V of GL2(q) containing each diagonal matrix in GL2(q) with
2-elements of F∗q along the main diagonal. Similarly, we assume V2 to be a Sylow 2-subgroup
of GLn−4(q) containing each diagonal matrix in GLn−4(q) with 2-elements of F∗q along the main
diagonal. Now let W be a Sylow 2-subgroup of GLn−2(q) containing{(

A
B

)
: A ∈ V,B ∈ V2

}
.

If n = 6, then we assume that V = V2 and that W is the Sylow 2-subgroup{(
A

B

)
: A,B ∈ V

}
·
〈(

I2

I2

)〉
of GL4(q).

Let t̃ := diag(1, . . . , 1,−1,−1) ∈ SLn(q). Then we have

CSLn(q)(t̃) =

{(
A

B

)
: A ∈ GLn−2(q), B ∈ GL2(q),det(A)det(B) = 1

}
.

It is easy to note that

T̃ :=

{(
A

B

)
: A ∈W,B ∈ V,det(A)det(B) = 1

}
is a Sylow 2-subgroup of CSLn(q)(t̃). Let T denote the image of T̃ in PSLn(q). As the centralizer

of t in PSLn(q) is the image of CSLn(q)(t̃) in PSLn(q), we have that T is a Sylow 2-subgroup of
CPSLn(q)(t). We assume S to be a Sylow 2-subgroup of PSLn(q) containing T . Since CS(t) =
T ∈ Syl2(CPSLn(q)(t)), we have that 〈t〉 is fully FS(PSLn(q))-centralized.

Let K1 be the image of {(
A

I2

)
: A ∈ SLn−2(q)

}
in PSLn(q), and let K2 be the image of{(

In−2

B

)
: B ∈ SL2(q)

}
in PSLn(q). Clearly, K1 and K2 are normal subgroups of CPSLn(q)(t) isomorphic to SLn−2(q)
and SL2(q), respectively. Define X1 to be the image of{(

A
I2

)
: A ∈W ∩ SLn−2(q)

}
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in PSLn(q), and define X2 to be the image of{(
In−2

B

)
: B ∈ V ∩ SL2(q)

}
in PSLn(q).

Note that X1 = T ∩K1 ∈ Syl2(K1) and X2 = T ∩K2 ∈ Syl2(K2). Define

Ci := FXi(Ki)

for i ∈ {1, 2}. By [11, Part I, Proposition 6.2], C1 and C2 are normal subsystems of FT (CPSLn(q)(t)).

Lemma 5.3. Let F := FS(PSLn(q)). If q ≡ 1 or 7 mod 8, then the components of CF (〈t〉) are
precisely the subsystems C1 and C2. If q ≡ 3 or 5 mod 8, then C1 is the only component of CF (〈t〉).

Proof. Set C := CPSLn(q)(t). It is easy to note that the 2-components of C are precisely the
quasisimple elements of {K1,K2}. As n ≥ 6 and as K1

∼= SLn−2(q) and K2
∼= SL2(q), it follows

that the 2-components of C are K1 and K2 if q 6= 3, and that K1 is the only 2-component of C if
q = 3.

By Lemma 3.21, K1/Z(K1) is not a Goldschmidt group. If q 6= 3, then the lemma just cited
also shows that K2/Z(K2) is a Goldschmidt group if and only if q ≡ 3 or 5 mod 8.

Now we apply Proposition 2.16 to conclude that FT∩K1(K1) and FT∩K2(K2) are precisely the
components of FT (C) if q ≡ 1 or 7 mod 8, and that FT∩K1(K1) is the only component of FT (C)
if q ≡ 3 or 5 mod 8. This completes the proof because CF (〈t〉) = FT (C), C1 = FT∩K1(K1) and
C2 = FT∩K2(K2). �

Lemma 5.4. Let F := FS(PSLn(q)). Then the factor system CF (〈t〉)/X1X2 is nilpotent.

Proof. Set C := CPSLn(q)(t). It is easy to note that X1X2 = K1K2 ∩ T . By Lemma 2.11,
CF (〈t〉)/X1X2 is isomorphic to the 2-fusion system of C/K1K2. The factor group C/K1K2 is
abelian. This easily implies that C/K1K2 has a nilpotent 2-fusion system. Hence CF (〈t〉)/X1X2

is nilpotent. �

Lemma 5.5. Let A ∈W and B ∈ V such that det(A)det(B) = 1. Let

m :=

(
A

B

)
Z(SLn(q)) ∈ T.

Then we have m ∈ Z(C1〈m〉) if and only if A ∈ Z(GLn−2(q)).

Proof. By [34, Proposition 1], we have C1〈m〉 = FX1〈m〉(K1〈m〉).
If A ∈ Z(GLn−2(q)), then m is central in K1〈m〉, which implies that m lies in the center of

C1〈m〉.
We show now that if A 6∈ Z(GLn−2(q)), then m 6∈ Z(C1〈m〉). Assume to the contrary that

A 6∈ Z(GLn−2(q)), but m ∈ Z(C1〈m〉). Clearly, m ∈ Z(X1〈m〉). So m centralizes X1. It easily
follows that A centralizes W ∩ SLn−2(q). Using Sylow’s theorem, we may see from Lemma 3.17
that any element A0 of W which centralizes W ∩ SLn−2(q) without being central in GLn−2(q) is
SLn−2(q)-conjugate to an element of W different from A0. As A centralizes W ∩ SLn−2(q), but
A 6∈ Z(GLn−2(q)), it follows that A is SLn−2(q)-conjugate to an element A′ ∈ W with A 6= A′.
As det(A) = det(A′), we have A′ = A′′A for some A′′ ∈W ∩ SLn−2(q). Now, it follows that m is
K1-conjugate to(

A′

B

)
Z(SLn(q)) =

(
A′′

I2

)(
A

B

)
Z(SLn(q)) ∈ X1〈m〉.

So m is K1-conjugate to an element of X1〈m〉 which is different from m. Therefore, m 6∈ Z(C1〈m〉),
a contradiction. �

Lemma 5.6. Set F := FS(PSLn(q)) and G := CF (〈t〉). Then hnp(CG(X1)) = X2.
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Proof. Set C := CPSLn(q)(t). Note that C ′ = K1K2.
By [24, Chapter 7, Theorem 3.4], we have foc(CG(X1)) = CT (X1) ∩ CC(X1)′ ≤ CT (X1) ∩ C ′ =

CT (X1) ∩ X1X2 = Z(X1)X2. As hnp(CG(X1)) ≤ foc(CG(X1)), it follows that hnp(CG(X1)) ≤
Z(X1)X2.

Let P be a subgroup of CT (X1) and let ϕ be a 2′-element of AutCC(X1)(P ). By [37, 8.2.7], we
have

[P, 〈ϕ〉] = [P, 〈ϕ〉, 〈ϕ〉] ≤ [hnp(CG(X1)) ∩ P, 〈ϕ〉] ≤ [Z(X1)X2 ∩ P, 〈ϕ〉].
Since ϕ ∈ AutCC(X1)(P ), K2 E C and X2 = T ∩ K2, it follows [P, 〈ϕ〉] ≤ X2. Consequently,
hnp(CG(X1)) ≤ X2.

On the other hand, since K2 ≤ O2(CC(X1)), we have X2 ≤ hnp(CG(X1)) by [19, Theorem
1.33]. �

Lemma 5.7. Set C := CPSLn(q)(t). Then AutC(X1) is a 2-group.

Proof. Let m ∈ NC(X1). We have

m =

(
M1

M2

)
Z(SLn(q))

for some M1 ∈ GLn−2(q) and some M2 ∈ GL2(q) with det(M1)det(M2) = 1. Let A ∈ W ∩
SLn−2(q) and

x :=

(
A

I2

)
Z(SLn(q)) ∈ X1.

As m normalizes X1, we have (
AM1

I2

)
Z(SLn(q)) = xm ∈ X1.

This easily implies that AM1 ∈ W ∩ SLn−2(q). It follows that M1 normalizes W ∩ SLn−2(q). By
[36, Theorem 1], we have NGLn−2(q)(W ∩ SLn−2(q)) = WCGLn−2(q)(W ). It follows that cm|X1,X1

is a 2-automorphism. �

Define T1 to be the image of{(
A

In−2

)
: A ∈ V ∩ SL2(q)

}
in PSLn(q) and T2 to be the image of

I2

B
I2

 : B ∈ V2 ∩ SLn−4(q)


in PSLn(q). Clearly, T1 and T2 are subgroups of X1. Recall that we use u to denote t{1,2} ∈ X1.
The following lemma sheds light on some properties of the centralizer fusion system CC1(〈u〉).

Lemma 5.8. The following hold.

(i) We have CX1(u) ∈ Syl2(CK1(u)). In particular, 〈u〉 is fully C1-centralized.
(ii) foc(CC1(〈u〉)) = T1T2.
(iii) If n = 6 and q ≡ 3 or 5 mod 8, then T1 and T2 are the only subgroups of foc(CC1(〈u〉))

which are isomorphic to Q8 and strongly closed in CC1(〈u〉).
(iv) If n ≥ 7 and q ≡ 3 or 5 mod 8, then T1 is the only subgroup of the intersection

foc(CC1(〈u〉)) ∩ CX1(T2) which is isomorphic to Q8 and strongly closed in CC1(〈u〉).
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(v) Let C1 be the image of {(
A

In−2

)
: A ∈ SL2(q)

}
in PSLn(q) and C2 be the image of

I2

B
I2

 : A ∈ SLn−4(q)


in PSLn(q). Then any component of CC1(〈u〉) lies in {FT1(C1),FT2(C2)}. Moreover,
FT1(C1) is a component if and only if q ≡ 1 or 7 mod 8, and FT2(C2) is a component if
and only if n ≥ 7 or q ≡ 1 or 7 mod 8.

Proof. Clearly, CK1(u) is the image of
A B

I2

 : A ∈ GL2(q), B ∈ GLn−4(q),det(A)det(B) = 1


in PSLn(q). Let W̃ be the image of

A B
I2

 : A ∈ V,B ∈ V2, det(A)det(B) = 1


in PSLn(q). Clearly, we have W̃ ≤ CX1(u). It is easy to note that W̃ is a Sylow 2-subgroup of

CK1(u). Thus CX1(u) = W̃ ∈ Syl2(CK1(u)). Hence (i) holds.
We have CC1(〈u〉) = FCX1

(u)(CK1(u)) = F
W̃

(CK1(u)). The focal subgroup theorem [24, Chapter

7, Theorem 3.4] implies that foc(CC1(〈u〉)) = W̃ ∩ (CK1(u))′. It is easy to see that (CK1(u))′ =
C1C2, where C1 and C2 are as in (v). We thus have foc(CC1(〈u〉)) = T1T2. Hence (ii) holds.

Now we turn to the proofs of (iii) and (iv). Assume that q ≡ 3 or 5 mod 8. Clearly, C1 and C2

are normal subgroups of CK1(u) and we have T1 = C1 ∩ W̃ , T2 = C2 ∩ W̃ . This implies that T1

and T2 are strongly closed in CC1(〈u〉). By Lemma 3.12, we have T1
∼= Q8 and, if n = 6, we also

have T2
∼= Q8. Clearly, any strongly CC1(〈u〉)-closed subgroup of foc(CC1(〈u〉)) = T1T2 is strongly

closed in FT1T2(C1C2). Hence, in order to prove (iii), it suffices to show that if n = 6, then T1

and T2 are the only strongly FT1T2(C1C2)-closed subgroups of T1T2 which are isomorphic to Q8.
Similarly, in order to prove (iv), it suffices to show that if n ≥ 7, then T1 is the only subgroup of
T1T2 which centralizes T2, which is isomorphic to Q8, and which is strongly closed in FT1T2(C1C2).

Continue to assume that q ≡ 3 or 5 mod 8. In order to prove the two statements just mentioned,
we need some observations. As C1

∼= SL2(q), we have that C1 is not 2-nilpotent. So FT1(C1) is
not nilpotent by [39, Theorem 1.4]. Again by [39, Theorem 1.4], it follows that AutC1(T1) is not
a 2-group. So AutC1(T1) has an element of order 3. Similarly, if n = 6, then AutC2(T2) has an
element of order 3. It follows that there is an element α ∈ AutC1C2(T1T2) such that α|T1,T1 has
order 3, while α|T2,T2 = idT2 . Moreover, if n = 6, then there is an element β ∈ AutC1C2(T1T2)
such that β|T1,T1 = idT1 , while β|T2,T2 has order 3.

Continue to assume that q ≡ 3 or 5 mod 8. If n = 6, then the observations in the preceding two
paragraphs show together with Lemma 2.14 that T1 and T2 are the only strongly FT1T2(C1C2)-
closed subgroups of T1T2 which are isomorphic to Q8. As observed above, this is enough to
conclude that (iii) holds. If n ≥ 7, then we may apply the observations in the preceding two
paragraphs together with Lemma 2.14 to conclude that if T0 is a strongly FT1T2(C1C2)-closed
subgroup of T1T2 such that T0

∼= Q8 and such that T0 centralizes T2, then T0 = T1. As observed
above, this is enough to conclude that (iv) holds.
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It remains to prove (v). It is easy to note that the 2-components of CK1(u) are precisely the
quasisimple elements of {C1, C2}. So (v) can be obtained from Proposition 2.16 and Lemma
3.21. �

Let G be as in Hypothesis 5.1. The group G realizes the 2-fusion system of PSLn(q). So, if
R is a Sylow 2-subgroup of G, then FS(PSLn(q)) ∼= FR(G). For the sake of simplicity, we will
identify S with a Sylow 2-subgroup R of G and FS(PSLn(q)) with FR(G). Hence we will work
under the following hypothesis.

Hypothesis 5.9. We will treat G as a group with S ∈ Syl2(G) and FS(G) = FS(PSLn(q)).

The following lemma will play a key role in the proof of Theorem 5.2.

Lemma 5.10. Let x be an involution of S such that CS(x) ∈ Syl2(CG(x)). Let C be a component
of FCS(x)(CG(x)), and let k be a natural number with 3 ≤ k < n. Then the following hold.

(i) There is a unique 2-component Y of CG(x) such that C = FCS(x)∩Y (Y ).
(ii) If C is isomorphic to the 2-fusion system of SLk(q), then we either have that Y/O(Y ) ∼=

SLεk(q
∗)/O(SLεk(q

∗)) for some nontrivial odd prime power q∗ and some ε ∈ {+,−} with
q ∼ εq∗; or k = 3, (q + 1)2 = 4, and Y/Z∗(Y ) ∼= M11.

(iii) If C is isomorphic to the 2-fusion system of a nontrivial quotient of SLk(q
2), then Y/O(Y )

is isomorphic to a nontrivial quotient of SLεk(q
∗) for some nontrivial odd prime power q∗

and some ε ∈ {+,−} with q2 ∼ εq∗.

In order to prove Lemma 5.10, we need the following observation.

Lemma 5.11. Let k ≥ 6 be a natural number satisfying P (k). If q0 is a nontrivial odd prime
power and H is a known finite simple group realizing the 2-fusion system of PSLk(q0), then
H ∼= PSLεk(q

∗) for some ε ∈ {+,−} and some nontrivial odd prime power q∗ with εq∗ ∼ q0.

Proof. It suffices to show that any known finite simple group H satisfies (CK). Without using the
CFSG, this is a priori not clear. It can be deduced from [29, Proposition 5.2.9] if H is alternating,
from [29, Table 4.5.1] if H is a finite simple group of Lie type in odd characteristic, and from [29,
Table 5.3] if H is sporadic. If H is a finite simple group of Lie type in characteristic 2, then H
satisfies (CK) since, in this case, no involution centralizer in H has a 2-component (see [5, 47.8
(3)]). �

Proof of Lemma 5.10. Since G satisfies (CK), we have that Y/Z∗(Y ) is a known finite simple group
for each 2-component Y of CG(x). Proposition 2.16 implies that there is a unique 2-component
Y of CG(x) with C = FCS(x)∩Y (Y ). Thus (i) holds.

Suppose that C is isomorphic to the 2-fusion system of SLk(q0)/Z, where either q0 = q and
Z = 1, or q0 = q2 and Z ≤ Z(SLk(q

2)). In order to prove (ii) and (iii), we need the following
three claims.

(1) The 2-fusion systems of Y/Z∗(Y ) and PSLk(q0) are isomorphic.
As C = FCS(x)∩Y (Y ), we have that the 2-fusion system of Y is isomorphic to the 2-fusion system

of SLk(q0)/Z. So, by Corollary 2.12, the 2-fusion system of Y/O(Y ) is isomorphic to the 2-fusion
system of SLk(q0)/Z. Lemma 2.13 implies that the 2-fusion systems of Y/Z∗(Y ) and PSLk(q0)
are isomorphic.

(2) We have Y/Z∗(Y ) ∼= PSLεk(q
∗) for some nontrivial odd prime power q∗ and some ε ∈ {+,−}

with q0 ∼ εq∗; or k = 3, (q0 + 1)2 = 4 and Y/Z∗(Y ) ∼= M11.
If k = 3, then it follows from (1) and Proposition 4.2. If k ∈ {4, 5}, then it follows from (1)

together with Propositions 4.5 and 4.6. Assume now that k ≥ 6. By Hypothesis 5.1 and since
k < n, we have that k satisfies P (k). Since Y/Z∗(Y ) is a known finite simple group, the claim
follows from (1) and Lemma 5.11.
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(3) Suppose that Y/Z∗(Y ) ∼= PSLεk(q
∗), where q∗ and ε are as in (2). Then we have Y/O(Y ) ∼=

SLεk(q
∗)/U , where U ≤ Z(SLεk(q

∗)) and the index of U in Z(SLεk(q
∗)) is equal to the 2-part of

|Z(SLk(q0))/Z|.
The group Y/O(Y ) is a perfect central extension of PSLεk(q

∗). Since Y/O(Y ) is core-free, the
center of Y/O(Y ) is a 2-group. So, by Lemmas 3.1 and 3.2, there is a central subgroup U of
SLεk(q

∗) with Y/O(Y ) ∼= SLεk(q
∗)/U . The claim now follows from

|PSLk(q0)|2|Z(SLk(q0))/Z|2 = |SLk(q0)/Z|2
= |Y |2
= |Y/Z∗(Y )|2|Z(Y/O(Y ))|
= |PSLk(q0)|2|Z(SLεk(q

∗))/U |.

Here, the second equality follows from the fact that Y realizes C, the third one holds since
|Z∗(Y )|2 = |Z∗(Y )/O(Y )|2 = |Z(Y/O(Y ))|2 = |Z(Y/O(Y ))|, and the fourth one follows from
(1).

Assume that q0 = q and Z = 1. By (2) and (3), one of the following hold: either k = 3,
(q + 1)2 = 4 and Y/Z∗(Y ) ∼= M11; or Y/O(Y ) ∼= SLεk(q

∗)/U , where q∗ is a nontrivial odd prime
power, ε ∈ {+,−}, q ∼ εq∗, U ≤ Z(SLεk(q

∗)) and the index of U in Z(SLεk(q
∗)) is equal to the

2-part of |Z(SLk(q))|. Assume that the latter holds. As q ∼ εq∗, we have (q − 1)2 = (εq∗ − 1)2 =
(q∗ − ε)2. Since |Z(SLk(q))| = (k, q− 1) and |Z(SLεk(q

∗))| = (k, q∗ − ε), it follows that the 2-part
of |Z(SLk(q))| is equal to the 2-part of |Z(SLεk(q

∗))|. It follows that U = O(Z(SLεk(q
∗))) =

O(SLεk(q
∗)). This completes the proof of (ii).

Assume now that q0 = q2. Then, since q2 ≡ 1 mod 4 , (2) und (3) imply that Y/O(Y ) is
isomorphic to a nontrivial quotient of SLεk(q

∗) for some nontrivial odd prime power q∗ and some
ε ∈ {+,−} with q2 ∼ εq∗. Thus (iii) holds. �

6. 2-components of involution centralizers

In this section, we continue to assume Hypotheses 5.1 and 5.9. We will use the notation
introduced in the last section without further explanation.

The main goal of this section is to describe the 2-components and the solvable 2-components
of the centralizers of involutions of G.

6.1. The subgroups K and L of CG(t). We start by considering CG(t). Let F := FS(G) =
FS(PSLn(q)). Since 〈t〉 is fully F-centralized, we have that T = CS(t) ∈ Syl2(CG(t)). Also, note
that FT (CG(t)) = CF (〈t〉) = FT (CPSLn(q)(t)).

Proposition 6.1. There is a unique 2-component K of CG(t) such that C1 = FT∩K(K). We
have K/O(K) ∼= SLεn−2(q∗)/O(SLεn−2(q∗)) for some nontrivial odd prime power q∗ and some
ε ∈ {+,−} with q ∼ εq∗. Moreover, K is a normal subgroup of CG(t).

Proof. Set F := FS(G). By Lemma 5.3, C1 is a component of CF (〈t〉). Lemma 5.10 (i) implies
that there is a unique 2-component K of CG(t) such that C1 = FT∩K(K). By definition, the
component C1 is isomorphic to the 2-fusion system of SLn−2(q). Lemma 5.10 (ii) implies that
K/O(K) ∼= SLεn−2(q∗)/O(SLεn−2(q∗)) for some nontrivial odd prime power q∗ and some ε ∈ {+,−}
with q ∼ εq∗.

It remains to show that K is a normal subgroup of CG(t). Suppose that K̃ is a 2-component of

CG(t) such that K ∼= K̃. Set C̃ := F
T∩K̃(K̃). Since K̃ is subnormal in CG(t), it easily follows from

[11, Part I, Proposition 6.2] that C̃ is subnormal in CF (〈t〉). Moreover, C̃ ∼= C1 as K̃ ∼= K. Hence C̃
is a component of CF (〈t〉). But as a consequence of Lemma 5.3, there is no component of CF (〈t〉)
which is isomorphic to C1 and different from C1. So we have C1 = C̃. The uniqueness in the first
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statement of the proposition implies that K = K̃. Consequently, CG(t) has no 2-component which
is different from K and isomorphic to K. So K is characteristic and hence normal in CG(t). �

From now on, K, q∗ and ε will always have the meanings given to them by Proposition 6.1.
Our next goal is to prove the existence and uniqueness of a normal subgroup L of CG(t) :=

CG(t)/O(CG(t)) such that L ∼= SL2(q∗), and to show that the image K of K in CG(t) and L are

the only subgroups of CG(t) which are components or solvable 2-components of CG(t). First, we
need to prove some lemmas.

Lemma 6.2. Let A ∈W and B ∈ V such that det(A)det(B) = 1. Let

m :=

(
A

B

)
Z(SLn(q)) ∈ T.

Set CG(t) := CG(t)/O(CG(t)). Then m centralizes K if and only if A ∈ Z(GLn−2(q)).

Proof. By Lemma 5.5, we have m ∈ Z(C1〈m〉) if and only if A ∈ Z(GLn−2(q)). Let C1 be the

subsystem of FT (CG(t)) corresponding to C1 under the isomorphism from FT (CG(t)) to FT (CG(t))

given by Corollary 2.12. Then we have m ∈ Z(C1〈m〉) if and only if A ∈ Z(GLn−2(q)). So it
is enough to show that m ∈ Z(C1〈m〉) if and only if m centralizes K. It is easy to note that

C1 = FX1
(K). As a consequence of Proposition 6.1, we have K E CG(t). By [34, Proposition 1],

we have

C1〈m〉 = FX1〈m〉(K〈m〉).

Since m is a 2-element of CG(t), we have O(K〈m〉) = O(K) = 1. Applying [23, Corollary 1], it
follows that the center of the product C1〈m〉 is equal to the center of K〈m〉. It follows that that
m ∈ Z(C1〈m〉) if and only if m centralizes K, as required. �

Lemma 6.3. Suppose that q∗ = 3. Let C := CG(t) and C := C/O(C). Then:

(i) The factor group C/KCC(K) is a 2-group.
(ii) The centralizer CC(u) is core-free.

(iii) The factor group CC(u)/CC(K) is core-free.

Proof. Clearly, C/KCC(K) is isomorphic to a subgroup of Out(K). Since q∗ = 3, we have that

K ∼= SLεn−2(3). By Propositions 3.40 and 3.42, Out(K) is a 2-group. So (i) holds.

Set C0 := KCC(K). As a consequence of (i), CC(u)/CC0
(u) is a 2-group. Hence, in or-

der to prove (ii), it suffices to show that CC0
(u) is core-free. As u ∈ K, we have CC0

(u) =

CK(u)CC(K). It follows that CC0
(u)/CC(K) ∼= CK(u)/(CK(u) ∩ CC(K)) = CK(u)/Z(K). By

Corollary 3.8, CK(u) is core-free. This easily implies that CK(u)/Z(K) is core-free. It follows

that CC0
(u)/CC(K) is core-free. Consequently, O(CC0

(u)) = O(CC(K)) = 1. So (ii) follows.

Finally, (iii) is true since CC(u)/CC0
(u) is a 2-group and CC0

(u)/CC(K) is core-free. �

Lemma 6.4. Let CG(t) := CG(t)/O(CG(t)). Then there is a unique pair (A1
+, A2

+) of normal
subgroups A1

+, A2
+ of CK(u)′ such that CK(u)′ = A1

+×A2
+, A1

+ ∼= SLε2(q∗), A2
+ ∼= SLεn−4(q∗)

and u ∈ A1
+. Moreover, the following hold.

(i) A1
+ ∩X1 = T1.

(ii) A2
+ ∩X1 = T2.

(iii) There is a group isomorphism ϕ : K → SLεn−2(q∗)/O(SLεn−2(q∗)) under which A1
+ cor-

responds to the image of {(
A

In−4

)
: A ∈ SLε2(q∗)

}
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in SLεn−2(q∗)/O(SLεn−2(q∗)) and under which A2
+ corresponds to the image of{(

I2

B

)
: B ∈ SLεn−4(q∗)

}
in SLεn−2(q∗)/O(SLεn−2(q∗)).

Proof. For each subsystem G of FT (CG(t)), we use G to denote the subsystem of FT (CG(t))

corresponding to G under the isomorphism from FT (CG(t)) to FT (CG(t)) given by Corollary 2.12.

Note that C1 = FX1
(K).

Set H := SLεn−2(q∗)/O(SLεn−2(q∗)). For each even natural number i with 2 ≤ i ≤ n− 2, let hi

be the image of h̃i := diag(−1, . . . ,−1, 1, . . . , 1) ∈ SLεn−2(q∗) in H, where −1 occurs precisely i
times as a diagonal entry.

We claim that there is a group isomorphism ϕ : K → H such that uϕ = hi for some even
2 ≤ i < n− 2. By Proposition 6.1, we have K ∼= K/O(K) ∼= H. As a consequence of Lemmas 3.3

and 3.4, any involution of SLεn−2(q∗) is conjugate to h̃i for some even 2 ≤ i ≤ n − 2. Since any
involution of H is induced by an involution of SLεn−2(q∗), it follows that any involution of H is

conjugate to hi for some even 2 ≤ i ≤ n− 2. As u is an involution of K, it follows that there is an
isomorphism ϕ : K → H mapping u to hi for some even 2 ≤ i ≤ n − 2. Assume that i = n − 2.
Then u is central in K. Thus u ∈ Z(C1) and hence u ∈ Z(C1). This is a contradiction to Lemma
3.18 and the definition of C1. So we have i < n− 2.

Set h := uϕ = hi. Also, let H1 be the image of{(
A

In−2−i

)
: A ∈ SLεi (q∗)

}
in H, and let H2 be the image of{(

Ii
B

)
: B ∈ SLεn−2−i(q

∗)

}
in H. For j ∈ {1, 2}, let Aj

+ be the subgroup of K corresponding to Hj under ϕ.
We now proceed in a number of steps in order to complete the proof.

(1) We have CK(u)′ = A1
+A2

+, [A1
+, A2

+] = 1, A1
+, A2

+ E CK(u), u ∈ A1
+ and u 6∈ A2

+.
It is easy to note that CH(h)′ is the central product of H1 and H2 and that H1 and H2 are

normal in CH(h). Therefore, CK(u)′ is the central product of A1
+ and A2

+, and A1
+, A2

+ are
normal in CK(u). By definition of H1 and H2, we have h ∈ H1 and h 6∈ H2. Thus u ∈ A1

+ and
u 6∈ A2

+.

(2) We have CX1
(u) ∈ Syl2(CK(u)), and {FX1∩A1

+(A1
+),FX1∩A2

+(A2
+)} contains every com-

ponent of CC1(〈u〉).
By Lemma 5.8 (i), we have that 〈u〉 is fully C1-centralized. So we have CX1

(u) ∈ Syl2(CK(u)).

Set P := CX1
(u)ϕ ∈ Syl2(CH(h)). It is easy to note that the 2-components of CH(h) are

precisely the quasisimple elements of {H1, H2}. Proposition 2.16 implies that the components of
FP (CH(h)) are precisely the quasisimple elements of {FP∩H1(H1),FP∩H2(H2)}.

Thus the components of CC1(〈u〉) = FCX1
(u)(CK(u)) are precisely the quasisimple elements of

{FX1∩A1
+(A1

+),FX1∩A2
+(A2

+)}.

(3) X1 ∩A1
+ and X1 ∩A2

+ are subgroups of foc(CC1(〈u〉)) and are strongly closed in CC1(〈u〉).
We have foc(CC1(〈u〉)) = CX1

(u) ∩ CK(u)′ by the focal subgroup theorem [24, Chapter 7,

Theorem 3.4]. So the claim follows from (1).

(4) Suppose that n = 6 and q ≡ 3 or 5 mod 8. Then we have i = 2 and hence A1
+ ∼= SLε2(q∗) ∼=

A2
+. Moreover, X1 ∩A1

+ = T1 and X1 ∩A2
+ = T2.
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Since n = 6 and 2 ≤ i < n − 2 = 4, we have i = 2. Thus A1
+ ∼= H1

∼= SLε2(q∗) ∼= H2
∼= A2

+.
By Proposition 6.1, we have q ∼ εq∗, whence q∗ ≡ 3 or 5 mod 8. Clearly, X1 ∩ A1

+ ∈ Syl2(A1
+)

and X1∩A2
+ ∈ Syl2(A2

+). Lemma 3.12 implies that X1∩A1
+ ∼= Q8

∼= X1∩A2
+. By Lemma 5.8

(iii), T1 and T2 are the only subgroups of foc(CC1(〈u〉)) which are isomorphic to Q8 and strongly

closed in CC1(〈u〉). So, by (3), {X1 ∩ A1
+, X1 ∩ A2

+} = {T1, T2}. We have u ∈ T1, and u 6∈ A2
+

by (1). It follows that X1 ∩A1
+ = T1 and X1 ∩A2

+ = T2.

(5) Suppose that n = 6 and q ≡ 1 or 7 mod 8, or that n ≥ 7. Then we have i = 2, and hence
A1

+ ∼= SLε2(q∗) and A2
+ ∼= SLεn−4(q∗). Moreover, X1 ∩A1

+ = T1 and X1 ∩A2
+ = T2.

We begin by proving that X1 ∩A2
+ = T2. As a consequence of Lemma 5.8 (v), CC1(〈u〉) has a

component with Sylow group T2. Applying (2), we may conclude that T2 = X1∩A1
+ or X1∩A2

+.
Since u ∈ A+

1 by (1), but u 6∈ T2, we have X1 ∩A2
+ = T2.

We show next that i = 2. Using Proposition 3.19, or using the order formulas for |SLn−4(q∗)|
and |SUn−4(q∗)| given by [33, Proposition 1.1 and Corollary 11.29], we see that

|SLεn−4(q∗)|2 = |SLn−4(q)|2 = |T2| = |A2
+|2 = |H2|2 = |SLεn−2−i(q

∗)|2.

Using the order formulas cited above, we may conclude that n− 2− i = n− 4, whence i = 2. In
particular, A1

+ ∼= SLε2(q∗) and A2
+ ∼= SLεn−4(q∗).

It remains to prove X1∩A1
+ = T1. If q ≡ 1 or 7 mod 8, then Lemma 5.8 (v) shows that CC1(〈u〉)

has a component with Sylow group T1. Since u ∈ T1, but u 6∈ A2
+, we have X1 ∩ A1

+ = T1 by
(2).

Now suppose that q ≡ 3 or 5 mod 8. Then we have q∗ ≡ 3 or 5 mod 8 since q ∼ εq∗. So, by
Lemma 3.12, a Sylow 2-subgroup of A1

+ is isomorphic to Q8. In particular, X1 ∩A1
+ ∼= Q8. By

(3), X1 ∩A1
+ is a subgroup of foc(CC1(〈u〉)) and is strongly closed in CC1(〈u〉). Moreover, by (1),

X1 ∩A1
+ centralizes X1 ∩A2

+ = T2. Lemma 5.8 (iv) now implies that T1 = X1 ∩A1
+.

(6) CK(u)′ = A1
+ ×A2

+.
We have A1

+ ∼= SLε2(q∗) by (4) and (5), and u ∈ Z(A1
+) by (1). It follows that Z(A1

+) = 〈u〉.
By (1), A1

+ ∩A2
+ ≤ Z(A1

+) and u 6∈ A1
+ ∩A2

+. It follows that A1
+ ∩A2

+ = 1. So (1) implies
that CK(u)′ = A1

+ ×A2
+.

(7) Assume that A1
◦ and A2

◦ are normal subgroups of CK(u)′ such that CK(u)′ = A1
◦ × A2

◦,
A1
◦ ∼= SLε2(q∗), A2

◦ ∼= SLεn−4(q∗) and u ∈ A1
◦. Then A1

◦ = A1
+ and A2

◦ = A2
+.

Let j ∈ {1, 2}. As a consequence of (4) and (5), Aj
+ is either quasisimple or isomorphic to

SL2(3). In either case, it is easy to see that Aj
+ is indecomposable, i.e. Aj

+ cannot be written as
an internal direct product of two proper normal subgroups. Moreover, |A1

+/(A1
+)′| and |Z(A2

+)|
as well as |A2

+/(A2
+)′| and |Z(A1

+)| are coprime. A consequence of the Krull-Remak-Schmidt
theorem, namely [35, Kapitel I, Satz 12.6], implies that {A1

+, A2
+} = {A1

◦, A2
◦}. Since u ∈ A1

+

and u 6∈ A2
◦, we have A1

+ = A1
◦ and A2

+ = A2
◦.

(8) The isomorphism ϕ : K → H maps A1
+ to the image of{(

A
In−4

)
: A ∈ SLε2(q∗)

}
in H and A2

+ to the image of {(
I2

B

)
: B ∈ SLεn−4(q∗)

}
in H.

By (4) and (5), we have i = 2. So the claim follows from the definitions of A1
+ and A2

+. �

From now on, A1
+ and A2

+ will always have the meanings given to them by Lemma 6.4.
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Lemma 6.5. Let C := CG(t) and C := C/O(C). Then A1
+ and A2

+ are normal subgroups of
CC(u).

Proof. We have CK(u) E CC(u) as K E C. Thus CK(u)′ E CC(u). Having this observed, the
lemma is immediate from Lemma 6.4. �

Let C := CG(t) and C := C/O(C). Next we introduce certain preimages of A1
+ and A2

+ in

CC(u). By Corollary 2.2, we have CC(u) = CC(u). We may see from Proposition 2.4 that there
is a bijection from the set of 2-components of CC(u) to the set of 2-components of CC(u) sending

each 2-component A of CC(u) to A.
Suppose that q∗ 6= 3. Then A1

+ is a component and hence a 2-component of CC(u). We use A1

to denote the 2-component of CC(u) corresponding to A1
+ under the bijection described above.

Suppose that q∗ 6= 3 or n ≥ 7. Then A2
+ is a component and hence a 2-component of CC(u).

We use A2 to denote the 2-component of CC(u) corresponding to A2
+ under the bijection described

above.
Suppose that q∗ = 3. By Lemma 6.3 (ii), O(CC(u)) = 1. So the factor group CC(u)/(CC(u) ∩

O(C)) is core-free, whence O(CC(u)) = CC(u) ∩ O(C). Let O(CC(u)) ≤ A1 ≤ CC(u) such
that A1/O(CC(u)) corresponds to A1

+ under the natural group isomorphism CC(u)/O(CC(u))→
CC(u). Furthermore, if n = 6, let O(CC(u)) ≤ A2 ≤ CC(u) such that A2/O(CC(u)) corresponds
to A2

+ under the natural group isomorphism CC(u)/O(CC(u))→ CC(u).

Lemma 6.6. We have T1 ≤ A1 and T2 ≤ A2.

Proof. Let i ∈ {1, 2}. Set C := CG(t) and C := C/O(C).

Let CC(u) ∩ O(C) ≤ Ãi ≤ CC(u) such that Ãi/(CC(u) ∩ O(C)) corresponds to Ai
+ under

the natural group isomorphism CC(u)/(CC(u) ∩ O(C)) → CC(u). We have Ti ≤ CC(u) and,

by Lemma 6.4, Ti ≤ Ai
+. Thus Ti ≤ Ãi. If Ai

+ ∼= SL2(3), then we have Ai = Ãi and thus
Ti ≤ Ai. Assume now that Ai

+ is a component of CC(u). Then Ai is the 2-component of CC(u)

associated to the 2-component Ãi/(CC(u)∩O(C)) of CC(u)/(CC(u)∩O(C)). So, by Proposition

2.4, Ai = O2′(Ãi), and hence Ti ≤ Ai. �

Lemma 6.7. There is an element g ∈ G such that T1
g = X2 and X2

g = T1. For each such g ∈ G,
we have ug = t and tg = u.

Proof. The first statement easily follows from FS(G) = FS(PSLn(q)). By Lemma 3.12, the groups
T1 and X2 are generalized quaternion. So u is the only involution of T1 and t is the only involution
of X2. Thus ug = t and tg = u for any g ∈ G with T1

g = X2 and X2
g = T1. �

With the above lemmas at hand, we can now prove the following proposition.

Proposition 6.8. Take an element g ∈ G such that T1
g = X2 and X2

g = T1. Set C := CG(t)
and C := C/O(C). Let L := A1

g. Then the following hold.

(i) L ≤ CC(u).
(ii) L is subnormal in C and L ∼= SL2(q∗).
(iii) The subgroups K and L are the only subgroups of C which are components or solvable

2-components of C. In particular, K and L are normal subgroups of C.

Proof. By Lemma 6.7, we have tg = u and ug = t. Hence CC(u)g = CC(u). As A1 is a subgroup
of CC(u), we thus have L = A1

g ≤ CC(u). So (i) holds.
Before proving (ii), we show that CL(K) is a normal subgroup of L containing X2. Since

CC(K) E C, we have CL(K) = L ∩ CC(K) E L. Because of Lemma 6.6, we have X2 = T1
g ≤

A1
g = L. Thus X2 ≤ L. By the definition of X2 and by Lemma 6.2, we have X2 ≤ CC(K). Thus

X2 ≤ CL(K).
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Note that X2 is generalized quaternion by Lemma 3.12 and in particular nonabelian.
We now prove (ii) for the case q∗ 6= 3. Then A1 is a 2-component of CC(u). As g normalizes

CC(u) and L = A1
g, it follows that L is a 2-component of CC(u). So L is a 2-component of CC(u).

Moreover, we have A1/O(A1) ∼= SL2(q∗) since A1/(A1 ∩ O(C)) ∼= A1 = A1
+ ∼= SL2(q∗). Hence

L/O(L) is isomorphic to SL2(q∗). The group CL(K)O(L)/O(L) is normal in L/O(L), and it is

nonabelian since X2 ≤ CL(K). As L/O(L) is quasisimple, it follows that CL(K)O(L) = L. So

CL(K) has odd index in L. Since L is a 2-component of CC(u), we have O2′(L) = L. It follows

that L = CL(K) ≤ CC(K). Since L is subnormal in CC(u) and CC(K) ≤ CC(u), we have that

L is subnormal in CC(K). Hence L is subnormal in C. As C is core-free, we have O(L) = 1. It

follows that O(L) = L ∩O(C) and hence L ∼= L/O(L) ∼= SL2(q∗). So we have proved (ii) for the
case q∗ 6= 3.

Assume now that q∗ = 3. Then O(CC(u)) = CC(u) ∩ O(C), O(CC(u)) ≤ A1 ≤ CC(u), and
A1/O(CC(u)) corresponds to A1

+ ∼= SL2(3) under the natural isomorphism CC(u)/O(CC(u))→
CC(u). By Lemma 6.5, A1

+ is normal in CC(u). Hence, A1/O(CC(u)) is a normal subgroup of
CC(u)/O(CC(u)) isomorphic to SL2(3). Since g normalizes CC(u) and L = A1

g, it follows that
O(CC(u)) ≤ L and that L/O(CC(u)) is a normal subgroup of CC(u)/O(CC(u)) isomorphic to
SL2(3). Since L/O(CC(u)) corresponds to L under the natural isomorphism CC(u)/O(CC(u))→
CC(u), it follows that L is a normal subgroup of CC(u) isomorphic to SL2(3). Recall that X2 ≤
CL(K) E L. As L has order 24 and X2 has order 8, CL(K) either equals L or has index 3 in

L. However, if the latter holds, then LCC(K)/CC(K) is a normal subgroup of CC(u)/CC(K) of

order 3, which is a contradiction to Lemma 6.3 (iii). Thus L = CL(K) ≤ CC(K). As L E CC(u)

and CC(K) ≤ CC(u), it follows that L is normal in CC(K) and hence subnormal in C. So we
have proved (ii) for the case q∗ = 3.

We now prove (iii). Clearly, T ∩ K = X1. Also T ∩ L = X2 since |X2| = |SL2(q)|2 =
|SL2(q∗)|2 = |L|2 and X2 ≤ L. As a consequence of Lemma 5.4, the fusion system FT (C)/(X1X2)

is nilpotent. Applying Lemma 2.17, we may conclude that K and L are the only subgroups of C
which are components or solvable 2-components of C. As K and L are not isomorphic, both are
characteristic and hence normal in C. �

It is not difficult to observe that the definition of L in Proposition 6.8 is independent of the
choice of g. From now on, L will always have the meaning given to it by the above proposition.

6.2. 2-components of centralizers of involutions conjugate to ti, i 6= 2. Having described
the components and the solvable 2-components of the group CG(t)/O(CG(t)), we now turn our
attention to centralizers of involutions of G not conjugate to t.

First we recall some notation from Section 5. Let 1 ≤ i < n. If i is even, then ti denotes the
image of (

In−i
−Ii

)
in PSLn(q). We use ρ to denote an element of F∗q with order (n, q− 1), and if ρ is a square in Fq,
then µ denotes an element of F∗q with µ2 = ρ. If n is even, ρ is a square in Fq and i is odd, then
ti is defined to be the image of (

µIn−i
−µIi

)
∈ SLn(q)

in PSLn(q). It is easy to note that ti lies in T and hence in S whenever ti is defined.
Let S denote the set of all subgroups E of PSLn(q) such that there is some elementary abelian

2-subgroup Ẽ ≤ SLn(q) with E = ẼZ(SLn(q))/Z(SLn(q)). For each 3 ≤ i ≤ n, we define Si to
be the set of all elements E of S such that E contains a PSLn(q)-conjugate of tj for some even
2 ≤ j < i.



A CHARACTERIZATION OF THE GROUPS PSLn(q) AND PSUn(q) BY THEIR 2-FUSION SYSTEMS, q ODD53

Lemma 6.9. Let 1 ≤ i < n such that ti is defined. Assume that i 6= 2, and that i ≤ n
2 if n is even.

Let P be a Sylow 2-subgroup of CPSLn(q)(ti) and F := FP (CPSLn(q)(ti)). Then the following hold.

(i) Assume that i 6∈ {1, n − 1}. Then F has precisely two components. Denoting them in a
suitable way by E1 and E2, the following hold.
(a) E1 is isomorphic to the 2-fusion system of SLn−i(q).
(b) E2 is isomorphic to the 2-fusion system of SLi(q).
(c) Let Y1 be the Sylow group of E1 and let Y2 be the Sylow group of E2. Then Y1Y2 is

normal in P and F/Y1Y2 is nilpotent. The group Yi, where i ∈ {1, 2}, contains a
PSLn(q)-conjugate of t. Moreover, any elementary abelian subgroup of Y1 of rank at
least 2 is contained in Sn−i, and any elementary abelian subgroup of Y2 of rank at
least 2 is contained in Si.

(ii) Assume that i = 1 or i = n − 1. Then F has a unique component. This component is
isomorphic to the 2-fusion system of SLn−1(q). If Y is its Sylow group, then Y E P and
F/Y is nilpotent. Moreover, any elementary abelian subgroup of Y of rank at least 2 is
contained in Sn−1.

Proof. Assume that i 6∈ {1, n−1}. By hypothesis, we have i 6= 2, and i ≤ n
2 if n is even. It follows

that i ≥ 3 and n− i ≥ 3. Let J1 be the image of{(
A

Ii

)
: A ∈ SLn−i(q)

}
in PSLn(q), and let J2 be the image of{(

In−i
A

)
: A ∈ SLi(q)

}
in PSLn(q). It is easy to note that J1 and J2 are the only 2-components of CPSLn(q)(ti). Applying
Proposition 2.16 and Lemma 3.21, we may conclude that E1 := FP∩J1(J1) and E2 := FP∩J2(J2) are
the only components of F = FP (CPSLn(q)(ti)). Clearly, E1 is isomorphic to the 2-fusion system of
SLn−i(q), while E2 is isomorphic to the 2-fusion system of SLi(q). Set Y1 := P∩J1 and Y2 := P∩J2.
It is easy to note that Y1Y2 = P ∩ J1J2. As J1J2 E CPSLn(q)(ti), it follows that Y1Y2 E P . By
Lemma 2.11, F/Y1Y2 is isomorphic to the 2-fusion system of CPSLn(q)(ti)/J1J2, and it is easy to
note that CPSLn(q)(ti)/J1J2 is 2-nilpotent. So F/Y1Y2 is nilpotent by [39, Theorem 1.4]. It is
clear from the definitions of J1 and J2 that both J1 and J2 contain a PSLn(q)-conjugate of t.
Hence Yk has an element which is PSLn(q)-conjugate to t for k ∈ {1, 2}. Clearly, any elementary
abelian 2-subgroup of Jk, k ∈ {1, 2}, lies in S. Moreover, any noncentral involution of J1 is
PSLn(q)-conjugate to tj for some even 2 ≤ j < n − i, and any noncentral involution of J2 is
PSLn(q)-conjugate to tj for some even 2 ≤ j < i. This implies that any elementary abelian
subgroup of Y1 of rank at least 2 is contained in Sn−i, and that any elementary abelian subgroup
of Y2 of rank at least 2 is contained in Si. This completes the proof of (i).

We omit the proof of (ii) since it is very similar to the one of (i). �

Proposition 6.10. Let 1 ≤ i < n such that ti is defined. Assume that i 6∈ {1, 2, n − 1}, and
that i ≤ n

2 if n is even. Let x be an involution of S which is G-conjugate to ti. Then CG(x) has
precisely two 2-components. Denoting them in a suitable way by J1 and J2, the following hold.

(i) J1/O(J1) is isomorphic to SLεn−i(q
∗)/O(SLεn−i(q

∗)), where ε and q∗ are as in Proposition
6.1.

(ii) J2/O(J2) ∼= SLεi (q
∗)/O(SLεi (q

∗)), where ε and q∗ are as in Proposition 6.1.
(iii) Any elementary abelian 2-subgroup of J1 of rank at least 2 is G-conjugate to a subgroup

of S lying in Sn−i, and any elementary abelian 2-subgroup of J2 of rank at least 2 is
G-conjugate to a subgroup of S lying in Si.
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Proof. Let F := FS(G) = FS(PSLn(q)). It suffices to prove the proposition under the as-
sumption that 〈x〉 is fully F-centralized, and we will assume that this is the case. So we
have CS(x) ∈ Syl2(CG(x)) and CS(x) ∈ Syl2(CPSLn(q)(x)). Also, FCS(x)(CG(x)) = CF (〈x〉) =
FCS(x)(CPSLn(q)(x)).

Clearly, x is PSLn(q)-conjugate to ti. So Lemma 6.9 (i) shows together with Lemma 5.10 (i)
that there exist two distinct 2-components J1 and J2 of CG(x) satisfying the following conditions,
where Y1 := CS(x) ∩ J1 and Y2 := CS(x) ∩ J2.

(1) FY1(J1) is isomorphic to the 2-fusion system of SLn−i(q).
(2) FY2(J2) is isomorphic to the 2-fusion system of SLi(q).
(3) Y1Y2 is normal in CS(x), and CF (〈x〉)/Y1Y2 is nilpotent.
(4) For k ∈ {1, 2}, Yk contains a G-conjugate of t.
(5) Any elementary abelian abelian subgroup of Y1 of rank at least 2 lies in Sn−i, and any

elementary abelian subgroup of Y2 of rank at least 2 lies in Si.
By (3) and Corollary 2.18, J1 and J2 are the only 2-components of CG(x). It remains to show
that J1 and J2 satisfy (i)-(iii). As Yk ∈ Syl2(Jk) for k ∈ {1, 2}, (5) implies (iii).

We now prove (ii). The proof of (i) will be omitted since it is very similar to the proof of (ii).

Let s be an element of J1 which is G-conjugate to t. Set C := CG(s), Ĉ := C/O(C) and

CG(x) := CG(x)/O(CG(x)).

Since J1 and J2 are distinct components of CG(x), we have [J1, J2] = 1 by [37, 6.5.3]. As s ∈ J1,
it follows that J2 is a component of C

CG(x)
(s). As a consequence of Corollary 2.2 and Proposition

2.4, CG(x) ∩ C has a 2-component H with H = J2.

By assumption, s is G-conjugate to t. So, by Proposition 6.8, Ĉ has a unique normal subgroup
K+ isomorphic to SLεn−2(q∗)/O(SLεn−2(q∗)) and a unique normal subgroup L+ isomorphic to

SL2(q∗). Moreover, K+ and L+ are the only subgroups of Ĉ which are components or solvable

2-components of Ĉ.

Clearly, Ĥ is a 2-component of C
Ĉ

(x̂). Lemma 2.5 implies that Ĥ is a 2-component of CK+(x̂)

or of CL+(x̂). By Corollary 3.46 (i), we even have that Ĥ is a component of CK+(x̂) or CL+(x̂). It

is easy to note that Ĥ/Z(Ĥ) ∼= H/Z∗(H) ∼= J2/Z(J2). By Corollary 3.46 (ii), we have Ĥ/Z(Ĥ) 6∼=
M11, and so J2/Z(J2) 6∼= M11. Now (2) and Lemma 5.10 (ii) imply that J2

∼= SLε0i (q0)/O(SLε0i (q0))

for some nontrivial odd prime power q0 and some ε0 ∈ {+,−} with q ∼ ε0q0. Hence Ĥ/Z(Ĥ) ∼=
J2/Z(J2) ∼= PSLε0i (q0). Note that εq∗ ∼ q ∼ ε0q0 and in particular (q∗2 − 1)2 = (q0

2 − 1)2.
Applying Corollary 3.46 (iii), we may conclude that q0 = q∗ and ε0 = ε. Consequently, we have
J2/O(J2) ∼= SLεi (q

∗)/O(SLεi (q
∗)). So we have proved (ii). �

The proof of the following proposition runs along the same lines as that of the previous result.

Proposition 6.11. Suppose that n is odd and i = n−1, or that n is even, i = 1 and t1 is defined.
Let x be an involution of S which is G-conjugate to ti. Then CG(x) has precisely one 2-component
J . We have J/O(J) ∼= SLεn−1(q∗)/O(SLεn−1(q∗)), where ε and q∗ are as in Proposition 6.1.
Moreover, any elementary abelian 2-subgroup of J of rank at least 2 is G-conjugate to a subgroup
of S lying in Sn−1.

Proof. Let F := FS(G) = FS(PSLn(q)). It suffices to prove the proposition under the as-
sumption that 〈x〉 is fully F-centralized, and we will assume that this is the case. So we
have CS(x) ∈ Syl2(CG(x)) and CS(x) ∈ Syl2(CPSLn(q)(x)). Also, FCS(x)(CG(x)) = CF (〈x〉) =
FCS(x)(CPSLn(q)(x)).

Clearly, x is PSLn(q)-conjugate to ti. Lemma 6.9 (ii) implies that CF (〈x〉) has a unique
component E , and that E is isomorphic to the 2-fusion system of SLn−1(q). Applying Lemma
5.10 (i), we may conclude that CG(x) has a unique 2-component J with E = FCS(x)∩J(J). By
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Lemma 5.10 (ii), J/O(J) ∼= SLε0n−1(q0)/O(SLε0n−1(q0)) for some nontrivial odd prime power q0 and
some ε0 ∈ {+,−} with ε0q0 ∼ q.

Set Y := CS(x) ∩ J . By Lemma 6.9 (ii), Y E CS(x) and CF (〈x〉)/Y is nilpotent. Applying
Corollary 2.18, we may conclude that J is the only 2-component of CG(x). Using Lemma 6.9 (ii),
we see that any elementary abelian subgroup of Y of rank at least 2 lies in Sn−1. As Y ∈ Syl2(J),
it follows that any elementary abelian 2-subgroup of J of rank at least 2 is G-conjugate to a
subgroup of S lying in Sn−1.

It remains to show that ε0 = ε and q0 = q∗. Define s := ti if i = 1 and s := tA, where
A := {1, . . . , n − 1}, if i = n − 1. Then we have s ∈ CG(t), and s is G-conjugate to x. Set

CG(t) := CG(t)/O(CG(t)). Lemma 6.2 shows that s centralizes K. Hence, K is a component
of C

CG(t)
(s). As a consequence of Corollary 2.2 and Proposition 2.4, CG(t) ∩ CG(s) has a 2-

component H with H = K. Set C := CG(s) and Ĉ := C/O(C). Then Ĥ is a 2-component of

C
Ĉ

(t̂). Since s is G-conjugate to x, Ĉ has precisely one component J+, and J+ is isomorphic to

SLε0n−1(q0)/O(SLε0n−1(q0)). By Lemma 2.5, Ĥ is a 2-component of CJ+(t̂). We see from Corollary

3.46 (i) that Ĥ is in fact a component of CJ+(t̂). It is easy to see that Ĥ/Z(Ĥ) ∼= H/Z∗(H) ∼=
K/Z(K) ∼= PSLεn−2(q∗). Note that ε0q0 ∼ q ∼ εq∗ and in particular (q0

2−1)2 = (q∗2−1)2. Using
this, we may deduce from Corollary 3.46 (iii) that q0 = q∗ and ε0 = ε. �

6.3. 2-components of centralizers of involutions conjugate to w. Recall that we assume ρ
to be an element of F∗q with order (n, q−1). Recall moreover that if n is even and ρ is a non-square
element of Fq, then w̃ denotes the matrix(

In/2
ρIn/2

)
and, if w̃ ∈ SLn(q), then w denotes its image in PSLn(q).

Lemma 6.12. Suppose that w is defined. Let P be a Sylow 2-subgroup of CPSLn(q)(w), and
let F denote the fusion system FP (CPSLn(q))(w)). Then F has precisely one component. This

component is isomorphic to the 2-fusion system of a nontrivial quotient of SLn
2
(q2). If Y is its

Sylow subgroup, then we have Y E P , and F/Y is nilpotent.

Proof. By Lemma 3.6 (i), CPSLn(q)(w) has precisely one 2-component J , and J is isomorphic to

a nontrivial quotient of SLn
2
(q2). Applying Proposition 2.16 and Lemma 3.21, we may conclude

that FP∩J(J) is the only component of F . The last statement of the lemma is given by Lemma
3.6 (ii). �

Proposition 6.13. Suppose that w is defined. Let x be an involution of S which is PSLn(q)-
conjugate to w. Then CG(x) has precisely one 2-component, say J . The group J/O(J) is iso-
morphic to a nontrivial quotient of SLε0n

2
(q0) for some nontrivial odd prime power q0 and some

ε0 ∈ {+,−} with q2 ∼ ε0q0.

Proof. Let F := FS(G) = FS(PSLn(q)). It suffices to prove the proposition under the as-
sumption that 〈x〉 is fully F-centralized, and we will assume that this is the case. So we
have CS(x) ∈ Syl2(CG(x)) and CS(x) ∈ Syl2(CPSLn(q)(x)). Also, FCS(x)(CG(x)) = CF (〈x〉) =
FCS(x)(CPSLn(q)(x)).

As x is PSLn(q)-conjugate to w, Lemma 6.12 implies that CF (〈x〉) has precisely one component,
say E , and that E is isomorphic to the 2-fusion system of a nontrivial quotient of SLn

2
(q2). By

Lemma 5.10 (i), CG(x) has a unique 2-component J such that E = FCS(x)∩J(J). Set Y :=
CS(x)∩J . As a consequence of Lemma 6.12, we have Y E CS(x), and the factor system CF (〈x〉)/Y
is nilpotent. So, by Corollary 2.18, J is the only 2-component of CG(x). Lemma 5.10 (iii) shows



56 JULIAN KASPCZYK

that J/O(J) is isomorphic to a nontrivial quotient of SLε0n
2

(q0) for some nontrivial odd prime

power q0 and some ε0 ∈ {+,−} with q2 ∼ ε0q0. �

7. The components of CG(t)

The goal of this section is to determine the isomorphism types of K and L. In order to do so,
we will apply the signalizer functor techniques introduced by Gorenstein and Walter in [32]. In
particular, we will see that L is isomorphic to SL2(q∗). This will enable us in Section 8 to prove
that a certain collection of conjugates of L generates a subgroup G0 of G which is isomorphic to
a nontrivial quotient of SLεn(q∗) and normal in G. This will complete the proof of Theorem 5.2.

7.1. 3-generation of involution centralizers. For each 3 ≤ i ≤ n, we define Ui to be the set
of all subgroups U of PSLn(q) such that U has a subgroup E with E ∈ Si and m(E) ≥ 3. The
following lemma will be important later in this section.

Lemma 7.1. Let 1 ≤ i < n such that ti is defined. Suppose that i ≤ n
2 if n is even. Let x be

an involution of S such that x is G-conjugate to ti and such that 〈x〉 is fully FS(G)-centralized.
Then CG(x) is 3-generated in the sense of Definition 3.35. Moreover, if i ≥ 4, then we have

CG(x) = 〈NCG(x)(U) | U ≤ CS(x), U ∈ Ui〉.

If i = 2, then we have

CG(x) = 〈NCG(x)(U) | U ≤ CS(x), U ∈ Un−2〉.

Proof. Set C := CG(x) and C := C/O(C). Recall that L2′(C) denotes the subgroup of C generated
by the 2-components of C and that L(C) denotes the product of all components of C. Clearly,

L2′(C) = L(C).
First we consider the case (n, i) 6= (6, 3). Then, by Propositions 6.1, 6.10 and 6.11, C has a

2-component J such that J ∼= SLεk(q
∗)/O(SLεk(q

∗)) for some k ≥ 4 and such that any elementary
abelian subgroup of Y := CS(x) ∩ J of rank at least 2 lies in Sk. If i ≥ 4, then we may assume
that k = i, and if i = 2, then k = n− 2.

Clearly, Y ∈ Syl2(J). By Lemma 3.37, we have that J is 3-generated. So we have

J = 〈NJ(U) | U ≤ Y,m(U) ≥ 3〉.

Set X := CS(x) ∩ L2′(C). By the Frattini argument, L(C) = JNL(C)(Y ) and C = L(C)NC(X).

It follows that

C = 〈NC(U) | U = X, or U ≤ Y and m(U) ≥ 3〉.
Lemma 2.1 implies that C is generated by O(C) together with the normalizers NC(U), where
U = X, or U ≤ Y and m(U) ≥ 3.

Let E denote the subgroup of S generated by t, t{n−2,n−1}, t{n−3,n−2} and t{n−4,n−3}. Clearly,
E ∼= E16. Since x is G-conjugate to ti and E ≤ CG(ti), there is a subgroup Ex of CS(x) which is
G-conjugate to E. By [28, Proposition 11.23], we have

O(C) = 〈CO(C)(D) | D ≤ Ex, D ∼= E8〉.

As remarked above, any elementary abelian subgroup of Y of rank at least 2 lies in Sk. So, if
U ≤ Y and m(U) ≥ 3, then U ∈ Uk. Also X ∈ Uk. Clearly, any E8-subgroup of Ex lies in Sk and
hence in Uk. We therefore have

C = 〈NC(U) | U ≤ CS(x), U ∈ Uk〉.

Consequently, C is 3-generated, and the last two statements of the lemma are satisfied.



A CHARACTERIZATION OF THE GROUPS PSLn(q) AND PSUn(q) BY THEIR 2-FUSION SYSTEMS, q ODD57

Suppose now that (n, i) = (6, 3). By Proposition 6.10, C has precisely two 2-components J1

and J2, and we have J1
∼= PSLε3(q∗) ∼= J2. Set Y1 := CS(x) ∩ J1 and Y2 := CS(x) ∩ J2. Since J1

is 2-generated by Lemma 3.36, we have

J1 = 〈NJ1
(U) | U ≤ Y1,m(U) ≥ 2〉.

Let y be an involution of Y2. We have [J1, J2] = 1 by [37, 6.5.3], and so y centralizes J1. As
Z(J1) = 1, we have y 6∈ J1. Now let U ≤ Y1 with m(U) ≥ 2. Then 〈U, y〉 has rank at least 3.
Moreover, it is clear that NJ1

(U) normalizes 〈U, y〉. Thus

J1 = 〈NJ1
(U) | U ≤ Y1Y2,m(U) ≥ 3〉.

Interchanging the roles of J1 and J2, we also see that

J2 = 〈NJ2
(U) | U ≤ Y1Y2,m(U) ≥ 3〉.

By the Frattini argument, C = J1J2NC(Y1Y2). Lemma 2.1 implies that C is generated by O(C)
together with the normalizers NC(U), where U ≤ Y1Y2 and m(U) ≥ 3. For any E16-subgroup A
of CS(x), we have

O(C) = 〈CO(C)(B) | B ≤ A,B ∼= E8〉.
by [28, Proposition 11.23]. It follows that C is 3-generated. The proof is now complete. �

Lemma 7.2. Suppose that w is defined. Let x be an involution of S which is PSLn(q)-conjugate
to w. Then CG(x) is 3-generated.

Proof. Set C := CG(x) and C := C/O(C). By Proposition 6.13, C has a unique 2-component J ,
and J is isomorphic to a nontrivial quotient of SLε0n

2
(q0) for some nontrivial odd prime power q0

and some ε0 ∈ {+,−} with q2 ∼ ε0q0. Note that q0 ≡ ε0 mod 8.
First we prove that C is 3-generated. Let R be a Sylow 2-subgroup of C and Y := R ∩ J . We

consider two cases.

Case 1: n ≥ 8.
By Lemma 3.37, J is 3-generated. Hence

J = 〈NJ(U) | U ≤ Y,m(U) ≥ 3〉.

By the Frattini argument, C = JNC(Y ). So C is 3-generated.

Case 2: n = 6.
We have J ∼= PSLε03 (q0). By Lemma 3.36, J is 2-generated. Applying the Frattini argument,

we may conclude that
C = 〈NC(U) | U ≤ Y,m(U) ≥ 2〉.

Now let U ≤ Y with m(U) ≥ 2. Since x is a central involution of C and Z(J) is trivial, we have
x 6∈ J and hence x 6∈ U . It follows 〈U, x〉 has rank at least 3. Moreover, as x is central in C, we
have NC(U) ≤ NC(〈U, x〉). Clearly, 〈U, x〉 ≤ R. It follows that

C = 〈NC(U) | U ≤ R,m(U) ≥ 3〉.

Hence C is 3-generated.

Applying Lemma 2.1, we may conclude that C is generated by O(C) together with the nor-
malizers NC(U), where U ≤ R and m(U) ≥ 3. By Lemma 3.6 (iii), R has an elementary abelian
2-subgroup of rank 4, say A. By [28, Proposition 11.23], we have

O(C) = 〈CO(C)(B) | B ≤ A,B ∼= E8〉.
So C is 3-generated. �

Corollary 7.3. Let x be an involution of S. Then CG(x) is 3-generated.
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Proof. As a consequence of Proposition 3.5, x is G-conjugate to ti for some 1 ≤ i < n such that
ti is defined or PSLn(q)-conjugate to w (if defined). So the statement follows from Lemmas 7.1
and 7.2. �

7.2. The case q∗ = 3. Recall that our goal is to determine the isomorphism types of K and L.
First we will deal with the case q∗ = 3. We will prove that, in this case, O(CG(t)) = 1.

Lemma 7.4. Let x be an involution of S, and let J be a 2-component of CG(x). Let 1 ≤ i < n
such that ti is defined. Suppose that q∗ = 3 and that x is G-conjugate to ti. Then J/O(J) is
locally balanced.

Proof. By Propositions 6.8 (iii), 6.10 and 6.11, we have J/O(J) ∼= SLεk(3) for some 3 ≤ k < n. So
J/O(J) is locally balanced by Lemma 3.47. �

Lemma 7.5. Let P and Q be subgroups of S.

(i) If P ∈ S and m(P ) ≤ 2, then there is a subgroup P of S such that P < P , P ∈ S and
m(P ) = 3.

(ii) If P and Q are elements of S of rank at least 3, then there exist some m ≥ 1 and a
sequence

P = P1, . . . , Pm = Q,

where Pi, 1 ≤ i ≤ m, is a subgroup of S of rank at least 2 lying in S and where

Pi ⊆ Pi+1 or Pi+1 ⊆ Pi
for all 1 ≤ i < m.

Proof. Suppose that P ∈ S and m(P ) ≤ 2. Let S̃ be a Sylow 2-subgroup of SLn(q) such that S is

the image of S̃ in PSLn(q). Note that S̃ is unique. Since P is an element of S, there exists some

elementary abelian 2-subgroup P̃ of SLn(q) such that P is the image of P̃ in PSLn(q). Clearly,

P̃ ≤ S̃. We have m(P̃ ) ≤ 3 as m(P ) ≤ 2. By Corollary 3.34, P̃ is contained in an E16-subgroup

of S̃. This implies (i).
We now prove (ii). Suppose that P and Q are elements of S of rank at least 3. There are

elementary abelian subgroups P̃ and Q̃ of SLn(q) such that P is the image of P̃ in PSLn(q) and

such that Q is the image of Q̃ in PSLn(q). Clearly, P̃ , Q̃ ≤ S̃. Also m(P̃ ),m(Q̃) ≥ 3. Since S̃ is
3-connected by Corollary 3.33, there exist some m ≥ 1 and a sequence

P̃ = P̃1, . . . , P̃n = Q̃,

where P̃i (1 ≤ i ≤ m) is an elementary abelian subgroup of S̃ of rank at least 3 and where

P̃i ⊆ P̃i+1 or P̃i+1 ⊆ P̃i
for all 1 ≤ i < m. Let Pi, 1 ≤ i ≤ m, denote the image of P̃i in S. Then the sequence

P = P1, . . . , Pm = Q

has the desired properties. �

Lemma 7.6. Suppose that q∗ = 3. For each elementary abelian subgroup E of S of rank at least
2, let

WE := 〈O(CG(x)) | x ∈ E#〉.
Let P and Q be subgroups of S with P,Q ∈ S and m(P ),m(Q) ≥ 3. Then WP = WQ.

Proof. By Lemma 7.5 (ii), there exist some m ≥ 1 and a sequence

P = P1, . . . , Pm = Q,

where Pi, 1 ≤ i ≤ m, is a subgroup of S of rank at least 2 lying in S and where

Pi ⊆ Pi+1 or Pi+1 ⊆ Pi
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for all 1 ≤ i < m. By Lemma 7.5 (i), there is a subgroup Pi of S such that Pi ∈ S, m(Pi) ≥ 3 and
Pi ≤ Pi for each 1 ≤ i ≤ m.

Let 1 ≤ i ≤ m and let x be an involution of Pi. Also let J be a 2-component of CG(x). As
Pi ∈ S, we have that x is G-conjugate to tj for some even 2 ≤ j < n. Therefore, by Lemma 7.4,
J/O(J) is locally balanced. Applying [32, Corollary 5.6], we may conclude that G is balanced
with respect to Pi.

Let 1 ≤ i < m. We have m(Pi∩Pi+1) ≥ 2 since Pi ⊆ Pi+1 or Pi+1 ⊆ Pi and m(Pi),m(Pi+1) ≥ 2.
Hence m(Pi ∩ Pi+1) ≥ 2. Proposition 2.8 (ii) implies

WPi = WPi
= WPi∩Pi+1

= WPi+1
= WPi+1 .

Consequently, WP = WQ, as wanted. �

Proposition 7.7. Suppose that q∗ = 3. Let x be an involution of S which is G-conjugate to ti
for some even 2 ≤ i < n. Then we have O(CG(x)) = 1. In particular, O(CG(t)) = 1.

Proof. We follow the pattern of the proof of [32, Theorem 9.1]. Let E be the subgroup of S
consisting of all tA, where A ⊆ {1, . . . , n} has even order. For each elementary abelian 2-subgroup
A of G of rank at least 2, let

WA := 〈O(CG(y)) | y ∈ A#〉.
Set W0 := WE and M := NG(W0). We accomplish the proof step by step.

(1) NG(S) ≤M .
Let g ∈ NG(S). Clearly, E ∈ S, and it is easy to note Eg still lies in S. Lemma 7.6 implies

that W0 = WEg . On the other hand, we have (W0)g = WEg by Proposition 2.8 (i). So we have
(W0)g = W0 and hence g ∈M .

(2) Let y be an involution of S such that y is G-conjugate to tj for some even 2 ≤ j < n. Then
y is M -conjugate to tj.

We have 〈y〉 ∈ S. By Lemma 7.5 (i), there is a subgroup A of S with 〈y〉 ≤ A, A ∈ S and
m(A) = 3. As a consequence of Lemma 3.22, there is an element g of G with Ag ≤ E. By Lemma
7.6 and Proposition 2.8 (i), we have (W0)g = (WA)g = WAg = W0. Thus g ∈M .

We have yg ∈ E, and yg is G-conjugate and hence PSLn(q)-conjugate to tj . It is rather easy
to show that an element of E is NPSLn(q)(E)-conjugate to tj if it is PSLn(q)-conjugate to tj . So
yg is NPSLn(q)(E)-conjugate and hence NG(E)-conjugate to tj . As NG(E) ≤ M , it follows that
yg is M -conjugate to tj . Hence y is M -conjugate to tj .

(3) Let y be an involution of S such that y is G-conjugate to tj for some even 2 ≤ j < n. Then
CG(y) ≤M .

Because of (2), we may assume that 〈y〉 is fully FS(G)-centralized. Then, by Lemma 7.1, CG(y)
is generated by the normalizers NCG(y)(U), where U is a subgroup of CS(y) such that there exists
B ≤ U with B ∈ S and m(B) ≥ 3. It suffices to show that each such normalizer lies in M .

Let U and B be as above and let g ∈ NCG(y)(U). By Lemma 7.6 and Proposition 2.8 (i), we
have (W0)g = (WB)g = WBg = W0. Thus g ∈M and hence NCG(y)(U) ≤M , as required.

(4) Let y be an involution of S. Then CG(y) ≤M .
We can see from Lemmas 3.14 and 3.15 that Z(S) has an involution s which is G-conjugate to

tj for some even 2 ≤ j < n. Let P be a Sylow 2-subgroup of CG(y) with s ∈ P . By (1), s ∈ M
and hence s ∈ P ∩M . Now let r ∈ NP (P ∩M). Then sr ∈ P ∩M . As a consequence of (1) and
(2), sr and s are M -conjugate to tj . Therefore, there is some m ∈ M with sr = sm. We have
rm−1 ∈ CG(s), and so rm−1 ∈M by (3). Hence r ∈M . Consequently, NP (P ∩M) = P ∩M . It
follows that P = P ∩M .

Let U ≤ P with m(U) ≥ 3 and let g ∈ NCG(y)(U). By Lemma 2.3, any E8-subgroup of S has
an involution which is the image of an involution of SLn(q). Since m(U) ≥ 3, it follows that U has
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an element u which is G-conjugate to tk for some even 2 ≤ k < n. By the preceding paragraph,
u, ug ∈ U ≤ P ≤ M . As a consequence of (1) and (2), u and ug are M -conjugate to tk. So there
is some m ∈ M with ug = um. Hence gm−1 ∈ CG(u). From (3), we see that CG(u) ≤ M , and
so gm−1 ∈M . Thus g ∈M and hence NCG(y)(U) ≤M . Since CG(y) is 3-generated by Corollary
7.3, it follows that CG(y) ≤M .

(5) M = G.
Assume that M 6= G. By [28, Proposition 17.11], we may deduce from (1) and (4) that M is

strongly embedded in G, i.e. M ∩Mg has odd order for any g ∈ G \M . Applying [49, Chapter
6, 4.4], it follows that G has only one conjugacy class of involutions. On the other hand, we see
from Proposition 3.5 that G has at least two conjugacy classes of involutions. This contradiction
shows that M = G.

(6) Conclusion.
Let y ∈ E# and let J be a 2-component of CG(y). By Lemma 7.4, J/O(J) is locally balanced.

So, by [32, Corollary 5.6], G is balanced with respect to E. Proposition 2.8 (ii) implies that W0

has odd order. By (5), we have M = G and hence W0 E G. As O(G) = 1 by Hypothesis 5.1,
it follows that W0 = 1. So we have O(CG(y)) = 1 for all y ∈ E#, and the statement of the
proposition follows. �

Proposition 7.7 implies that if q∗ = 3, then K ∼= SLεn−2(3) and L ∼= SL2(3). Our next goal is
to find the isomorphism types of K and L for the case q∗ 6= 3.

In general, O(CPSLn(q)(t)) is not trivial. So, if q∗ is not assumed to be 3, we have no chance to
prove that O(CG(t)) = 1. However, we will be able to show that

∆G(F ) =
⋂
a∈F#

O(CG(a)) = 1

for any Klein four subgroup F of G consisting of elements of the form tA, where A ⊆ {1, . . . , n}
has even order. This will later enable us to determine the isomorphism types of K and L for the
case q∗ 6= 3.

7.3. 2-balance of G. In this subsection, we prove that G is 2-balanced when q∗ 6= 3.

Lemma 7.8. Set C := CG(t) and C := C/O(C). Let F be a Klein four subgroup of C. Then
[∆C(F ),K] = 1.

Proof. We closely follow arguments found in the proof of [32, Theorem 5.2].
First we consider the case that F has a nontrivial element y such that y centralizes K. Then

K normalizes O(CC(y)) and, as K E C, O(CC(y)) also normalizes K. It follows that

[K,O(CC(y))] ≤ K ∩O(CC(y)).

Hence, [K,O(CC(y))] is a subgroup ofK with odd order. By [37, 1.5.5], K normalizes [K,O(CC(y))].
It follows that

[K,O(CC(y))] ≤ O(K).

As O(K) = 1, this implies that O(CC(y)) centralizes K. By definition of ∆C(F ), we have

∆C(F ) ≤ O(CC(y)). Consequently, ∆C(F ) centralizes K.

Now we treat the case that CF (K) = 1. For each subgroup or element X of C, let X̂ denote

the image of X in C/CC(K). Since CF (K) = 1, we have F̂ ∼= F , and so F̂ is a Klein four

subgroup of Ĉ. As K ∼= SLεn−2(q∗)/O(SLεn−2(q∗)), we have that K is locally 2-balanced (see

Lemma 3.48). Using this together with the fact that the group Ĉ = C/CC(K) is isomorphic to a

subgroup of Aut(K) containing Inn(K), we may conclude that ∆
Ĉ

(F̂ ) = 1. By [32, Proposition
3.11], if X is a finite group, B a 2-subgroup of X and N E X, then the image of O(CX(B)) in
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X/N lies in O(CX/N (BN/N)). Thus, if y is an involution of F , then the image of O(CC(y)) in

Ĉ lies in O(C
Ĉ

(ŷ)). It follows that the image of ∆C(F ) in Ĉ is contained in ∆
Ĉ

(F̂ ) = 1. Hence

∆C(F ) ≤ CC(K). �

Lemma 7.9. Let C := CG(t) and C := C/O(C). Then CC(K) ∩ CC(L) is a 2-group.

Proof. For convenience, we denote CC(K) ∩ CC(L) by CC(K,L). Since C is core-free, we have

that CC(K,L) is core-free. So it is enough to prove that CC(K,L) is 2-nilpotent. By [39, Theorem

1.4], it suffices to show that CC(K,L) has a nilpotent 2-fusion system.
Let X denote the subgroup of T consisting of all elements of T of the form(

A
B

)
Z(SLn(q))

with A ∈W ∩ Z(GLn−2(q)), B ∈ V ∩ Z(GL2(q)) and det(A)det(B) = 1.
Let A ∈W and B ∈ V with det(A)det(B) = 1 and

m :=

(
A

B

)
Z(SLn(q)) ∈ T.

Assume that m centralizes K and L. Then we have A ∈ Z(GLn−2(q)) by Lemma 6.2. Since m
centralizes L, m also centralizes X2. Thus m centralizes X2, and so B centralizes V ∩ SL2(q).
Lemma 3.17 implies that B ∈ Z(GL2(q)). So we have m ∈ X. Conversely, if A ∈ Z(GLn−2(q))
and B ∈ Z(GL2(q)), then m ∈ CC(K,L) as a consequence of Lemmas 6.2 and 3.43. It follows

that T ∩ CC(K,L) = X.
Let F := FS(PSLn(q)) = FS(G). Since X is central in CPSLn(q)(t), the only subsystem of

CF (〈t〉) on X is the nilpotent fusion system on X. It follows that FX(CC(K,L)) is nilpotent. So

CC(K,L) has a nilpotent 2-fusion system, as required. �

In the following lemma, A1 and A2 have the meanings given to them after Lemma 6.5.

Lemma 7.10. Set C := CG(t). Suppose that q∗ 6= 3. Then A1, A2 and L are the only 2-
components of CC(u). Moreover, the following hold:

(i) A1 is the only 2-component of CC(u) containing u.
(ii) A2 is the only 2-component of CC(u) containing neither u nor t.
(iii) L is the only 2-component of CC(u) containing t.

Proof. By definition, A1 and A2 are 2-components of CC(u). Also, it is clear from the definition
of L (see Proposition 6.8) that L is a 2-component of CC(u).

Set C := C/O(C). As a consequence of Lemma 6.4, A1 and A2 are the only 2-components of
CK(u). Moreover, L is a component of CC(u). So Lemma 2.5 shows that A1, A2 and L are the
only 2-components of CC(u). As we have observed after Lemma 6.5, there is a bijection from the
set of 2-components of CC(u) to the set of 2-components of CC(u) sending each 2-component A

of CC(u) to A. Therefore, A1, A2 and L are the only 2-components of CC(u).
It remains to prove (i), (ii) and (iii). We have T1 ≤ A1 by Lemma 6.6 and thus u ∈ A1. From

the definition of L, it is clear that t ∈ L. Moreover, u 6∈ L since t is the only involution of L.
Similarly, t 6∈ A1. Also, it is easy to see from Lemma 6.4 that u and t cannot be elements of
A2. �

Lemma 7.11. Suppose that q∗ 6= 3. Let F be a Klein four subgroup of T . Then we have
∆G(F ) ∩ CG(t) ≤ O(CG(t)).

Proof. Set C := CG(t), D := ∆G(F ) ∩ C and C := C/O(C). We are going to show that D is
trivial.



62 JULIAN KASPCZYK

A direct calculation shows that D ≤ ∆C(F ). For each a ∈ F#, we have O(CC(a)) ≤ O(CC(a))

as a consequence of Corollary 2.2. Therefore, we have ∆C(F ) ≤ ∆C(F ), and hence D ≤ ∆C(F ).

Lemma 7.8 implies that [D,K] = 1. In particular, D ≤ CC(u) = CC(u). Fix a subgroup D0 of

CC(u) with D0 = D. Also, let g ∈ G with ug = t and tg = u (such an element exists by Lemma
6.7). Note that (D0)g ≤ (CC(u))g = CC(u).

We accomplish the proof step by step.

(1) A1, A2 and L are normal subgroups of CC(u).
This is immediate from Lemma 7.10.

(2) There is a group isomorphism Aut(A1) → Aut(L) which maps Inn(A1) to Inn(L) and
Aut

(D0)g
(A1) to AutD(L).

Let AutD0(L/O(L)) denote the image of AutD0(L) under the natural group homomorphism
Aut(L) → Aut(L/O(L)). Also, let Aut(D0)g(A1/O(A1)) denote the image of Aut(D0)g(A1) under
the natural group homomorphism Aut(A1)→ Aut(A1/O(A1)).

From Lemma 7.10, it is clear that (A1)g
−1

= L. The group isomorphism cg−1 |A1,L induces a
group isomorphism A1/O(A1) → L/O(L), and this group isomorphism induces a group isomor-
phism Aut(A1/O(A1)) → Aut(L/O(L)). By a direct calculation, the group isomorphism just
mentioned maps Aut(D0)g(A1/O(A1)) to AutD0(L/O(L)) and Inn(A1/O(A1)) to Inn(L/O(L)).

We have A1/(A1∩O(C)) ∼= A1
∼= SL2(q∗). As SL2(q∗) is core-free, it follows that A1∩O(C) =

O(A1). So the natural group homomorphism A1 → A1 induces a group isomorphism A1/O(A1)→
A1. This group isomorphism induces a group isomorphism Aut(A1/O(A1))→ Aut(A1). By a di-
rect calculation, the group isomorphism just mentioned maps Aut(D0)g(A1/O(A1)) to Aut

(D0)g
(A1)

and Inn(A1/O(A1)) to Inn(A1). In a very similar way, we obtain an isomorphism Aut(L/O(L))→
Aut(L) which maps AutD0(L/O(L)) to AutD0

(L) = AutD(L) and Inn(L/O(L)) to Inn(L).

As a consequence of the preceding observations, there is a group isomorphism Aut(A1) →
Aut(L) which maps Inn(A1) to Inn(L) and Aut

(D0)g
(A1) to AutD(L), as asserted.

(3) Aut
(D0)g

(A1) ≤ Inn(A1).

As observed above, D0 = D centralizes K. In particular, D centralizes A2. This implies that
[D0, A2] ≤ O(C). As D0 normalizes A2 by (1), we also have that [D0, A2] ≤ A2. Consequently,
[D0, A2] ≤ O(A2). Because of Lemma 7.10, we have (A2)g = A2. It follows that [(D0)g, A2] ≤
O(A2). This easily implies [(D0)g, A2] ≤ O(A2). As A2

∼= SLεn−4(q∗) by Lemma 6.4, we have

O(A2) ≤ Z(A2). It follows that [A2, (D0)g, A2] = [(D0)g, A2, A2] ≤ [Z(A2), A2] = 1. The Three

Subgroups Lemma [37, 1.5.6] implies [A2, (D0)g] = [A2, A2, (D0)g] = 1. Hence, (D0)g centralizes

A2. By (1), (D0)g normalizes A1. Clearly, Aut
(D0)g

(K) has odd order. The assertion now follows

from Lemmas 6.4 (iii), 3.49 and 3.50.

(4) D ≤
⋂
y∈F# O(CL(y)).

As a consequence of (2) and (3), we have AutD(L) ≤ Inn(L). This implies D ≤ LCC(L). By

[37, 6.5.3], L ≤ CC(K). As observed above, [D,K] = 1 and hence D ≤ CC(K). It follows that D

is a subgroup of L(CC(L)∩CC(K)). By Lemma 7.9, CC(L)∩CC(K) is a 2-group. As D has odd
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order and L E C, this implies that D ≤ L. Now we see that

D ≤ L ∩∆C(F )

=
⋂
y∈F#

(L ∩O(CC(y)))

=
⋂
y∈F#

(CL(y) ∩O(CC(y)))

=
⋂
y∈F#

O(CL(y)).

(5) Conclusion.
As F is a Klein four subgroup of T , we have F = 〈y1, y2〉 for two commuting involutions y1 and

y2 of T . For i ∈ {1, 2}, we have

yi =

(
Ai

Bi

)
Z(SLn(q))

for some Ai ∈ W and Bi ∈ V with det(Ai)det(Bi) = 1. Let y3 := y1y2, A3 := A1A2 and
B3 := B1B2. As y1, y2, y3 are involutions, we have (Bi)

2 ∈ Z(GL2(q)) for each i ∈ {1, 2, 3}.
It is easy to note that X2 ∈ Syl2(L). If B ∈ V ∩ SL2(q) and

y :=

(
In−2

B

)
Z(SLn(q)) ∈ X2,

then

yyi =

(
In−2

BBi

)
Z(SLn(q))

for each i ∈ {1, 2, 3}. Applying Lemma 3.51, we deduce that⋂
y∈F#

O(CL(y)) = 1.

So we have D = 1 by (4). This completes the proof. �

Lemma 7.12. Suppose that q∗ 6= 3. Then G is 2-balanced.

Proof. Let F be a Klein four subgroup of G and let a be an involution of G centralizing F . We
have to show that ∆G(F ) ∩ CG(a) ≤ O(CG(a)).

Assume that a is G-conjugate to t. Then there is some g ∈ G with ag = t and F g ≤ T . By
Lemma 7.11, we have ∆G(F g) ∩ CG(t) ≤ O(CG(t)). Clearly ∆G(F )g = ∆G(F g). It follows that
∆G(F ) ∩ CG(a) ≤ O(CG(a)).

Assume now that a is not G-conjugate to t. Let J be a 2-component of CG(a). By Propositions
6.10, 6.11 and 6.13, either J/O(J) ∼= SLεk(q

∗)/O(SLεk(q
∗)) for some k ≥ 3, or J/O(J) is isomorphic

to a nontrivial quotient of SLε0n
2

(q0) for some nontrivial odd prime power q0 and some ε0 ∈ {+,−}.
So J/O(J) is locally 2-balanced by Lemma 3.48. Applying [32, Theorem 5.2], we may conclude
that ∆CG(a)(F ) ≤ O(CG(a)). A direct calculation shows that ∆G(F )∩CG(a) ≤ ∆CG(a)(F ). Hence
∆G(F ) ∩ CG(a) ≤ O(CG(a)). �

7.4. The case q∗ 6= 3: Triviality of ∆G(F ).

Lemma 7.13. Suppose that q∗ 6= 3. Assume moreover that q ≡ 1 mod 4 or n ≥ 7. Then we have
∆G(F ) = 1 for each Klein four subgroup F of S.
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Proof. We follow the pattern of the proof of [32, Theorem 9.1].
For each elementary abelian 2-subgroup A of G of rank at least 3, we define

WA := 〈∆G(F ) | F ≤ A,m(F ) = 2〉.

Let P and Q be elementary abelian subgroups of S of rank at least 3. We claim that WP = WQ.
By Corollary 3.33 (iii), S is 3-connected. So there exist a natural number m ≥ 1 and a sequence

P = P1, . . . , Pm = Q

such that Pi, 1 ≤ i ≤ m, is an elementary abelian subgroup of S of rank at least 3 and such that

Pi ⊆ Pi+1 or Pi+1 ⊆ Pi
for all 1 ≤ i < m. By Lemma 7.12, G is 2-balanced. Proposition 2.8 (ii) implies that WPi = WPi+1

for all 1 ≤ i < m. Therefore, WP = WQ, as asserted.
We use W0 to denote WP , where P is an elementary abelian subgroup of S of rank at least 3.

Let M := NG(W0). We accomplish the proof step by step.

(1) NG(S) ≤M .
Let g ∈ NG(S). Take an elementary abelian subgroup P of S with m(P ) ≥ 3. By Proposition

2.8 (i), we have (W0)g = (WP )g = WP g = W0. Thus g ∈M .

(2) Let x be an involution of S. Then CG(x) ≤M .
By Corollary 3.34, there is an elementary abelian subgroup P of S with x ∈ P and m(P ) = 4.

Clearly, P ≤ CG(x). Let R be a Sylow 2-subgroup of CG(x) containing P . By Corollary 7.3,
CG(x) is 3-generated. Hence, CG(x) is generated by the normalizers NCG(x)(U), where U ≤ R
and m(U) ≥ 3. It suffices to show that each such normalizer lies in M .

So let U be a subgroup of R with m(U) ≥ 3, and let g ∈ NCG(x)(U). Let Q be an elementary

abelian subgroup of U with m(Q) = 3, and let h ∈ G with Rh ≤ S. Then WQh = WQgh = WPh =
W0. Proposition 2.8 (i) implies that WQ = WQg = WP = W0. Applying Proposition 2.8 (i) again,
it follows that (W0)g = (WQ)g = WQg = W0. Hence g ∈M and thus NCG(x)(U) ≤M .

(3) M = G.
Assume that M 6= G. By [28, Proposition 17.11], we may deduce from (1) and (2) that M is

strongly embedded in G, i.e. M ∩Mg has odd order for any g ∈ G \M . Applying [49, Chapter
6, 4.4], it follows that G has only one conjugacy class of involutions. On the other hand, we see
from Proposition 3.5 that G has at least two conjugacy classes of involutions. This contradiction
shows that M = G.

(4) Conclusion.
Let F be a Klein four subgroup of S. By Corollary 3.34, there is an elementary abelian subgroup

P of S with F ≤ P and m(P ) = 4. Clearly, ∆G(F ) ≤ WP . Since G is 2-balanced, WP has odd
order by Proposition 2.8 (ii). Since WP = W0, we have WP E G by (3). As O(G) = 1 by
Hypothesis 5.1, it follows that WP = 1. Hence ∆G(F ) = 1. �

Next, we deal with the case that n = 6, q ≡ 3 mod 4 and q∗ 6= 3. We show that, in this case,
∆G(F ) = 1 for each Klein four subgroup F of S consisting of elements of the form tA, where
A ⊆ {1, . . . , n} has even order. We need the following lemma.

Lemma 7.14. Suppose that q∗ 6= 3. Set ` := n−4. Let E be the subgroup of T consisting of all tA,
where A ⊆ {1, . . . , n} has even order. Let E1 denote the subgroup of X1 consisting of all tA, where
A is a subset of {1, . . . , n−2} of even order. Then we may choose elements m1, . . . ,m` ∈ NK(E1)
and an E8-subgroup E0 of E with

K = 〈O(K), L2′(CK(E0)), L2′(CK(E0))m1 , . . . , L2′(CK(E0))m`〉.
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Proof. Set C := CG(t) and C := C/O(C). Let H := SLεn−2(q∗)/O(SLεn−2(q∗)). Let D̃ be the
subgroup of SLεn−2(q∗) consisting of all diagonal matrices in SLεn−2(q∗) with diagonal entries in

{1,−1}, and let D denote the image of D̃ in H. Denote by H1 the image of{(
A

In−4

)
: A ∈ SLε2(q∗)

}
in H.

We claim that there is a group isomorphism ψ : K → H which maps E1 to D and A1 to H1. By
Lemma 6.4 (iii), there is a group isomorphism ϕ : K → H under which A1 corresponds toH1. Since
u is the only involution of A1, we have that uϕ is the image of diag(−1,−1, 1, . . . , 1) ∈ SLεn−2(q∗)

in H. Clearly, E1 is elementary abelian of order 2n−3. Using Lemma 3.22, we conclude that E1
ϕ

is H-conjugate to D. So there is some α ∈ Inn(H) mapping E1
ϕ

to D. We may assume that α
centralizes uϕ. Then H1

α = H1, and the isomorphism ψ := ϕα maps E1 to D and A1 to H1, as
desired.

Using Lemma 3.38, we can find elements x1, . . . , x` ∈ NH(D) such that H = 〈H1, H1
x1 , . . . ,

H1
x`〉. Therefore, K has elements m1, . . . , m` such that

K = 〈A1, A1
m1 , . . . , A1

m`〉

and m1, . . . ,m` ∈ NK(E1). From Lemma 2.1, we see that NK(E1) = NK(E1). So we may assume

mi ∈ NK(E1) for i ∈ {1, . . . , `}. Let E0 := 〈u, t{3,4}, t{4,5}〉. By Lemma 6.5, we have A1 E CC(u).

In particular, E0 normalizes A1. Moreover, E0 centralizes T1. We have A1
∼= SL2(q∗) and

T1 ∈ Syl2(A1) (see Lemma 6.4). Applying Lemma 3.43, we conclude that A1 ≤ CK(E0). As

A1 E CK(u) and A1 ≤ CK(E0) ≤ CK(u), we even have that A1 is a component of CK(E0). It
follows that

K = 〈L2′(CK(E0)), L2′(CK(E0))m1 , . . . , L2′(CK(E0))m`〉.
Let k ∈ K such that k ∈ CK(E0). As K E C, we have [k,E0] ≤ O(C) ∩ K = O(K). Thus
kO(K) ∈ CC/O(K)(E0O(K)/O(K)). By Lemma 2.1, there is an element z ∈ CC(E0) such that

kO(K) = zO(K). Observing that z ∈ CK(E0) and that k = z, we may conclude that CK(E0) =

CK(E0). If 1 ≤ i ≤ `, then L2′(CK(E0))mi = L2′(CK(E0))mi = L2′(CK(E0))
mi

= L2′(CK(E0))mi ,
where the second equality follows from Proposition 2.4. It follows that

K = 〈O(K), L2′(CK(E0)), L2′(CK(E0))m1 , . . . , L2′(CK(E0))m`〉.
This completes the proof. �

Lemma 7.15. Suppose that n = 6, q ≡ 3 mod 4 and q∗ 6= 3. Let E denote the subgroup of S
consisting of all tA, where A is a subset of {1, . . . , n} of even order. Then ∆G(F ) = 1 for any
Klein four subgroup F of E.

Proof. We follow the pattern of the proof of [32, Theorem 9.1].
Set W0 := 〈∆G(F ) | F ≤ E,m(F ) = 2〉 and M := NG(W0). Since T is the image of{(

A
B

)
: A ∈W,B ∈ V,det(A)det(B) = 1

}
in PSLn(q), we have T ∈ Syl2(PSLn(q)) by Lemma 3.15. Hence S = T and thus t ∈ Z(S). By
choice of W (see Section 5), we have

W =

{(
A

B

)
: A,B ∈ V

}
·
〈(

I2

I2

)〉
We accomplish the proof step by step.

(1) For each subgroup E0 of E with order at least 8, we have NG(E0) ≤M .
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Clearly, E ∼= E16. Therefore, the statement follows from the 2-balance of G (see Lemma 7.12)
and Proposition 2.8 (ii).

(2) NG(S) ≤M .
First we prove S ≤M . By (1), we have E ≤M . As q ≡ 3 mod 4 and S = T , any element of S

can be written as a product of an element of E and an element of S induced by a matrix of the
form (

A
B

)
with A ∈W ∩ SL4(q) and B ∈ V ∩ SL2(q). So, in order to prove that S ≤M , it suffices to show
that each element of S induced by a matrix of this form lies in M . If B ∈ V ∩ SL2(q), then the
image of (

I4

B

)
in S centralizes the group 〈t{1,2}, t{2,3}, t{3,4}〉 ∼= E8. So it is contained in M by (1). Hence, in
order to prove that S ≤M , it suffices to show that if A ∈W ∩ SL4(q), then the image of(

A
I2

)
in S lies in M . So assume that A ∈ W ∩ SL4(q). By the structure of W , there are elements M1,
M2 of V such that det(M1) = det(M2) and

A =

(
M1

M2

)
or A =

(
M1

M2

)(
I2

I2

)
.

The image of M1

M2

I2


in S can be written as a product of an element of E and an element of S induced by a matrix of
the form M̃1

M̃2

I2


with M̃1, M̃2 ∈ V ∩ SL2(q). The images of(

M̃1

I4

)
and

I2

M̃2

I2


in S centralize the groups 〈t{3,4}, t{4,5}, t{5,6}〉 and 〈t{1,2}, t{2,5}, t{5,6}〉, respectively. So they are
elements of M . It follows that the image ofM1

M2

I2


in S lies in M . The image of the block matrix I2

I2

I2


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in S normalizes E and is thus contained in M . It follows that the image of(
A

I2

)
in S lies in M . Consequently, S ≤M .

By Lemma 3.23, AutPSLn(q)(S) = Inn(S). As FS(G) = FS(PSLn(q)), it follows that AutG(S) =
Inn(S), and so NG(S) = SCG(S). We have seen above that S ≤M , and we have CG(S) ≤M by
(1). Hence NG(S) ≤M .

(3) CG(t) ≤M .
Let E1 be the subgroup of X1 consisting of all tA, where A is a subset of {1, . . . , n − 2}

of even order. As a consequence of Lemma 7.14, there is an E8-subgroup E0 of E such that
K = 〈O(K), CK(E0), NK(E1)〉. By (1), CK(E0) and NK(E1) are subgroups of M . By [28,
Proposition 11.23], we have

O(K) = 〈CO(K)(B) | B ≤ E,m(B) = 3〉.
Therefore, O(K) ≤M by (1). Consequently, K ≤M . By the Frattini argument,

CG(t) = KNCG(t)(X1).

So it suffices to show that NCG(t)(X1) ≤ M . Since FS(G) = FS(PSLn(q)), we may conclude
from Lemma 5.7 that AutCG(t)(X1) is a 2-group. Hence, NCG(t)(X1)/CCG(t)(X1) is a 2-group. As
X1 E T = S ∈ Syl2(CG(t)), it follows that NCG(t)(X1) = SCCG(t)(X1). We have S ≤ M by (2),
and CCG(t)(X1) ≤ CG(E1) ≤M by (1). Consequently, NCG(t)(X1) ≤M , as required.

(4) Let x be an involution of S which is G-conjugate to t. Then x is M -conjugate to t.
It is easy to see that if an element of T is PSLn(q)-conjugate to t, then it is CPSLn(q)(t)-

conjugate to an element of E. As FS(G) = FS(PSLn(q)) and S = T , it follows that x is
CG(t)-conjugate and hence M -conjugate to an element y of E. It is rather easy to show that
if an element of E is PSLn(q)-conjugate to t, then it is NPSLn(q)(E)-conjugate to t. So, as
FS(G) = FS(PSLn(q)), we have that y is NG(E)-conjugate to t. By (1), NG(E) ≤ M , and so x
is M -conjugate to t.

(5) Let x be an involution of S. Then CG(x) ≤M .
Let R be a Sylow 2-subgroup of CG(x) with CS(x) ≤ R. We have t ∈ Z(S) ≤ CS(x) and

t ∈ M . Thus t ∈ R ∩M . Let r ∈ NR(R ∩M). Then y := tr ∈ R ∩M . As a consequence of
(4), y is M -conjugate to t. So there is an element m of M such that tr = y = tm. We have
rm−1 ∈ CG(t) ≤M by (3), and so r ∈ R∩M . Hence, NR(R∩M) = R∩M , and thus R = R∩M .

By Corollary 7.3, CG(x) is 3-generated. Therefore, CG(x) is generated by the normalizers
NCG(x)(U), where U ≤ R and m(U) ≥ 3. It suffices to show that each such normalizer lies in M .

So let U ≤ R with m(U) ≥ 3, and let g ∈ NCG(x)(U). Take an elementary abelian subgroup
Q of U of rank 3. Lemma 2.3 shows that any E8-subgroup of S has an involution which is the
image of an involution of SLn(q). This implies that Q has an element s which is G-conjugate to
t. Since s, sg ∈ U ≤ R ≤ M , we see from (4) that s and sg are M -conjugate to t. So there are

elements m,m′ ∈ M such that s = tm and sg = tm
′
. We have tm

′
= sg = (tm)g = tmg. Thus

mgm′−1 ∈ CG(t) ≤M , and hence g ∈M . It follows that NCG(x)(U) ≤M .

(6) M = G.
Assume that M 6= G. By [28, Proposition 17.11], we may deduce from (2) and (5) that M is

strongly embedded in G, i.e. M ∩Mg has odd order for any g ∈ G \M . Applying [49, Chapter
6, 4.4], it follows that G has only one conjugacy class of involutions. On the other hand, we see
from Proposition 3.5 that G has precisely two conjugacy classes of involutions. This contradiction
shows that M = G.

(7) Conclusion.
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Let F be a Klein four subgroup of E. Clearly, ∆G(F ) ≤ W0. By (6), we have W0 E G. Since
G is 2-balanced, W0 has odd order by Proposition 2.8 (ii). As O(G) = 1 by Hypothesis 5.1, it
follows that W0 = 1. Hence ∆G(F ) = 1. �

7.5. Quasisimplicity of the 2-components of CG(t). In this subsection, we determine the
isomorphism types of K and L.

Lemma 7.16. Let x and y be two commuting involutions of G. Set C := CG(x) and C :=
C/O(C). Then any 2-component of CC(y) is a component of CC(y).

Proof. By [32, Corollary 3.2], L2′(CC(y)) = L2′(CL(C)(y)). We know from Section 6 that L(C)

is a K-group, i.e. the composition factors of L(C) are known finite simple groups. Applying [26,
Theorem 3.5], we conclude that L2′(CL(C)(y)) = L(CL(C)(y)). Therefore, any 2-component of

CL(C)(y) is a component of CL(C)(y). So any 2-component of CC(y) is a component of CC(y).

Instead of using [26, Theorem 3.5], the lemma could be proved directly by using Corollary 3.46
(i) and the results of Section 6. �

Proposition 7.17. K is isomorphic to a quotient of SLεn−2(q∗) by a central subgroup of odd
order.

Proof. The proof is inspired from the proof of [32, Theorem 10.1].
For q∗ = 3, the proposition follows from Proposition 7.7. From now on, we assume that q∗ 6= 3.
Set C := CG(t). Let E denote the subgroup of T consisting of all tA, where A ⊆ {1, . . . , n}

has even order. We assume m1, . . . ,m`, where ` := n − 4, to be elements of K and E0 to be an
E8-subgroup of E with

K = 〈O(K), L2′(CK(E0)), L2′(CK(E0))m1 , . . . , L2′(CK(E0))m`〉.
Such elements m1, . . . ,m` and such a subgroup E0 exist by Lemma 7.14.

The proof will be accomplished step by step.

(1) Let f be an involution of E0. Then L2′(CK(E0)) ≤ L2′(CC(f)).
As K E C, we have CK(E0) E CC(E0). This implies L2′(CK(E0)) ≤ L2′(CC(E0)). By [32,

Theorem 3.1], we have L2′(CCC(f)(E0)) ≤ L2′(CC(f)). Clearly, CCC(f)(E0) = CC(E0). It follows
that L2′(CK(E0)) ≤ L2′(CC(E0)) ≤ L2′(CC(f)).

(2) Let F be a Klein four subgroup of E0. Set D := [CO(K)(F ), L2′(CK(E0))]. Then D = 1.

Clearly, L2′(CK(E0)) normalizes CO(K)(F ). Also, O2′(L2′(CK(E0))) = L2′(CK(E0)), and
CO(K)(F ) is a 2′-group. Applying [28, Proposition 4.3 (i)], we conclude thatD = [D,L2′(CK(E0))].

Now let f be an involution of F . We are going to show that D ≤ O(CG(f)). Set M :=
L2′(CC(f)). By (1), L2′(CK(E0)) ≤ M . Also, D ≤ CC(F ) ≤ CC(f) and M E CC(f). It follows
that D = [D,L2′(CK(E0))] ≤ [CC(f),M ] ≤M .

Let CG(f) := CG(f)/O(CG(f)). By Corollary 2.2, C
CG(f)

(t) = CC(f). As a consequence of

Proposition 2.4, L2′(CCG(f)
(t)) = M . Lemma 7.16 implies that M = L(C

CG(f)
(t)). It easily

follows that O(M) is central in M .
From the definition of D, it is clear that D ≤ O(K). So we have D ≤ M ∩ O(K) ≤ O(M).

It follows that D ≤ O(M) ≤ O(M) ≤ Z(M). In particular, L2′(CK(E0)) centralizes D. Thus
D = [D,L2′(CK(E0))] ≤ O(CG(f)).

Since f was arbitrarily chosen, it follows that D ≤ ∆G(F ). By Lemmas 7.13 and 7.15, we have
∆G(F ) = 1. Consequently, D = 1, as wanted.

(3) O(K) ≤ Z(K).
By [28, Proposition 11.23], we have

O(K) = 〈CO(K)(F ) : F ≤ E0,m(F ) = 2〉.
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Because of (2), it follows that O(K) centralizes L2′(CK(E0)). By choice of E0, we have

K = 〈O(K), L2′(CK(E0)), L2′(CK(E0))m1 , . . . , L2′(CK(E0))m`〉
for some m1, . . . ,m` ∈ K. It follows that K = O(K)CK(O(K)). Therefore, CK(O(K)) has odd

index in K. We have O2′(K) = K since K is a 2-component of C. It follows that K = CK(O(K)).
Consequently, O(K) ≤ Z(K).

(4) Conclusion.
Applying [28, Lemma 4.11], we deduce from (3) that K is a component of C. Therefore, K is

quasisimple. We have

K/Z(K) ∼= (K/O(K))/Z(K/O(K)) ∼= PSLεn−2(q∗).

Applying Lemmas 3.1 and 3.2, we conclude that K ∼= SLεn−2(q∗)/Z for some central subgroup Z
of SLεn−2(q∗). Using Proposition 3.19, or using the order formulas for |SLεn−2(q∗)| and |SLn−2(q)|
given by [33, Proposition 1.1 and Corollary 11.29], we see that

|SLεn−2(q∗)|2 = |SLn−2(q)|2 = |X1| = |K|2 = |SLεn−2(q∗)/Z|2.
Thus Z has odd order. �

Proposition 7.18. We have L ∼= SL2(q∗) and L E CG(t). Moreover, L is the only normal
subgroup of CG(t) which is isomorphic to SL2(q∗).

Proof. For q∗ = 3, this follows from Propositions 7.7 and 6.8.

Assume now that q∗ 6= 3. Let K̃ := KO(CG(t)). By the last statement in Proposition 2.4,

K = O2′(K̃). Let i ∈ {1, 2}. Since Ai is a 2-component of CCG(t)(u), we have Ai = O2′(Ai). Also,

Ai ≤ K̃, and so Ai ≤ O2′(K̃) = K. It follows that Ai is a 2-component of CK(u).
By Proposition 7.17, we have K ∼= SLεn−2(q∗)/Z for some central subgroup Z of SLεn−2(q∗)

with odd order. It is easy to see that if m is a non-central involution of SLεn−2(q∗)/Z and J is a
2-component of its centralizer in SLεn−2(q∗)/Z, then J ∼= SLεk(q

∗) for some k ≥ 2. Since u is a
non-central involution of K and A1/O(A1) ∼= SL2(q∗), it follows that A1

∼= SL2(q∗). By definition
of L (see Proposition 6.8), L is isomorphic to A1. So we have L ∼= SL2(q∗).

Let L0 be the 2-component of CG(t) associated to LO(CG(t))/O(CG(t)). By [37, 6.5.2], we have
[L0,K] = 1. Hence L0 ≤ CCG(t)(u). So L0 is a 2-component of CCG(t)(u). Clearly A1 6= L0 6= A2.
Lemma 7.10 implies that L0 = L. From Proposition 6.8 (iii), we see that L = L0 E CG(t).

Proposition 6.8 (iii) also shows that K and L are the only 2-components of CG(t). So L is the
only normal subgroup of CG(t) isomorphic to SL2(q∗). �

8. The subgroup G0

Let A be a subset of {1, . . . , n} with order 2. Then tA is G-conjugate to t. Proposition
7.18 implies that CG(tA) has a unique normal subgroup isomorphic to SL2(q∗). We denote this
subgroup by LA, and we define G0 to be the subgroup of G generated by the groups LA, where
A = {i, i+ 1} for some 1 ≤ i < n. We are going to prove that G0 E G and that G0 is isomorphic
to a nontrivial quotient of SLεn(q∗). This will complete the proof of Theorem 5.2.

By Proposition 7.17, K is isomorphic to a quotient of SLεn−2(q∗) by a central subgroup of odd
order. By the proof of Proposition 7.18, A1 and A2 are 2-components of CK(u) if q∗ 6= 3.

Lemma 8.1. Let Z ≤ Z(SLεn−2(q∗)) with K ∼= H := SLεn−2(q∗)/Z. Let H1 be the image of{(
A

In−4

)
: A ∈ SLε2(q∗)

}
in H and H2 the image of {(

I2

A

)
: A ∈ SLεn−4(q∗)

}
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in H. Then there is a group isomorphism ϕ : K → H which maps A1 to H1 and A2 to H2.

Proof. For q∗ = 3, this follows from Proposition 7.7 and Lemma 6.4 (iii).
Assume now that q∗ 6= 3. Let ϕ : K → H be a group isomorphism. For each even natural

number k with 2 ≤ k < n− 2, let hk be the image of(
−Ik

In−2−k

)
in H. It is easy to note that each non-central involution of H is conjugate to hk for some even
2 ≤ k < n− 2. As u is a non-central involution of K, we may assume that uϕ = tk for some even
2 ≤ k < n− 2.

Let H̃1 be the image of {(
A

In−2−k

)
: A ∈ SLεk(q∗)

}
in H and H̃2 be the image of {(

Ik
A

)
: A ∈ SLεn−2−k(q

∗)

}
in H. It is easy to note that the 2-components of CH(tk) are precisely the quasisimple elements

of {H̃1, H̃2}. Also, tk ∈ H̃1, but tk 6∈ H̃2. On the other hand, A1 and A2 are the 2-components of

CK(u), and we have u ∈ A1. This implies (A1)ϕ = H̃1 and (A2)ϕ = H̃2. Since A1
∼= L ∼= SL2(q∗),

we have k = 2, and hence H̃1 = H1 and H̃2 = H2. �

Lemma 8.2. Let 1 ≤ i < j < n. Set A := {i, i+ 1} and B := {j, j + 1}. Then:

(i) If i+ 1 < j, then [LA, LB] = 1.
(ii) Suppose that j = i + 1. Then there is a group isomorphism from 〈LA, LB〉 to SLε3(q∗)

under which LA corresponds to the subgroup
 M

0
0

0 0 1

 : M ∈ SLε2(q∗)


of SLε3(q∗) and under which LB corresponds to the subgroup

 1 0 0
0
0

M

 : M ∈ SLε2(q∗)


of SLε3(q∗).

(iii) Suppose that 1 ≤ i ≤ n− 3 and that j = i+ 1. Set k := i+ 2 and C := {k, k + 1}. Then
〈LA, LB, LC〉 is isomorphic to SLε4(q∗).

Proof. Let H, H1, H2 and ϕ be as in Lemma 8.1. For each D ⊆ {1, . . . , n− 2} of even order, let
hD be the image of the matrix diag(d1, . . . , dn−2) ∈ SLεn−2(q∗) in H, where d` = −1 if ` ∈ D and
d` = 1 if ` ∈ {1, . . . , n− 2} \D. Note that uϕ = h{1,2}. Let J be the subgroup of H consisting of
all hD, where D ⊆ {1, . . . , n− 2} has even order, and let E1 denote the subgroup of X1 consisting
of all tD, where D ⊆ {1, . . . , n − 2} has even order. From Lemma 3.22, we see that (E1)ϕ is
CH(uϕ)-conjugate to J . Upon replacing ϕ by a composite of ϕ and an inner automorphism of H,
we may (and will) assume that (E1)ϕ = J .

From the definition of L (Proposition 6.8), it is easy to see that L{1,2} = A1.
We now prove (i). Assume that i + 1 < j. Since FS(G) = FS(PSLn(q)), there is some g ∈ G

with (tA)g = t{1,2} = u and (tB)g = t{3,4}. So it suffices to show that [L{1,2}, L{3,4}] = 1. Let h
denote the image of t{3,4} under ϕ. Then h ∈ H2 since t{3,4} ∈ T2 ≤ A2. Therefore, and since h is
conjugate to uϕ = h{1,2}, we may choose ϕ such that h = h{3,4} (and for the rest of the proof of
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(i), we will assume that ϕ has been chosen in this way). We see from Lemma 3.38 (ii) that there
is an a ∈ H with (h{1,2})

a = h{3,4} and (H1)a ≤ H2. In particular, [H1, (H1)a] = 1. If k is the

preimage of a under ϕ, then uk = t{3,4} and [A1, (A1)k] = 1. We also have (A1)k = L{3,4} and
thus [L{1,2}, L{3,4}] = 1.

We now prove (ii). Assume that j = i+ 1. Since FS(G) = FS(PSLn(q)), there is some g ∈ G
with (tA)g = t{1,2} and (tB)g = t{2,3}. Therefore, it is enough to prove (ii) under the assumption
that i = 1, and we will assume that this is the case. We see from Lemmas 6.4 (ii) and 6.6 that
X1 ∩ A2 = T2. Thus t{2,3} 6∈ A2. Let h denote the image of t{2,3} under ϕ. Then h 6∈ H2.
Therefore, and since h is conjugate to uϕ = h{1,2}, we may choose ϕ such that h = h{2,3} (and for

the rest of the proof of (ii), we will assume that ϕ has been chosen in this way). Let H̃1 be the
image of 

1
M

In−5

 : M ∈ SLε2(q∗)


in H. By Lemma 3.38 (ii), there is some a ∈ H with (h{1,2})

a = h{2,3} and (H1)a = H̃1. Let k be

the preimage of a under ϕ. Then uk = t{2,3} and hence L{2,3} = (L{1,2})
k = (A1)k. We see now

that ϕ induces an isomorphism from 〈L{1,2}, L{2,3}〉 to 〈H1, H̃1〉 mapping L{1,2} to H1 and L{2,3}

to H̃1. With this observation, it is easy to complete the proof of (ii).
We now prove (iii). Assume that 1 ≤ i ≤ n − 3 and that j = i + 1. Let k and C be as in the

statement of (iii). Since FS(G) = FS(PSLn(q)), there is some g ∈ G with (tA)g = t{1,2} = u,
(tB)g = t{2,3} and (tC)g = t{3,4}. Therefore, it is enough to show that 〈L{1,2}, L{2,3}, L{3,4}〉 is

isomorphic to SLε4(q∗). Let h := (t{2,3})
ϕ and h̃ := (t{3,4})

ϕ. As in the proof of (ii), we can

choose ϕ such that h = h{2,3}. Also, h̃ = hD for some D ⊆ {1, . . . , n − 2} of order 2. We

have t{3,4} ∈ T2 ≤ A2 and hence hD = h̃ ∈ H2. Therefore, D ∩ {1, 2} = ∅. We claim that
D ∩ {2, 3} = {3}. Assume not. Then D ∩ {2, 3} = ∅, and it is easy to find an element a ∈ NH(J)

with ha = h{1,2} = uϕ and (h̃)a = h{3,4} ∈ H2. So there is some k ∈ NK(E1) with (t{2,3})
k = u

and (t{3,4})
k ∈ T2. On the other hand, it is easy to see from FS(G) = FS(PSLn(q)) that there is

no g ∈ K with (t{2,3})
g = u and (t{3,4})

g ∈ T2. This contradiction shows that D ∩ {2, 3} = {3}.
So we can choose ϕ such that h = h{2,3} and h̃ = h{3,4}. Now the proof of (iii) can be completed
by using similar arguments as in the proof of (ii). �

Proposition 8.3. G0 is isomorphic to a nontrivial quotient of SLεn(q∗).

Proof. Assume that ε = +. By Lemma 8.2, the groups L{1,2}, . . . , L{n−1,n} form a weak Curtis-
Tits system in G of type SLn(q∗) (in the sense of [30, p. 9]). Applying a version of the Curtis-Tits
theorem, namely [30, Chapter 13, Theorem 1.4], we conclude that G0 is isomorphic to a quotient
of SLn(q∗).

Assume now that ε = −. Then Lemma 8.2 shows that G0 has a weak Phan system of rank
n − 1 over Fq∗2 (in the sense of [14, p. 288]). If q∗ 6= 3, then [14, Theorem 1.2] implies that G0

is isomorphic to a quotient of SUn(q∗). If q∗ = 3, the same follows from [14, Theorem 1.3] and
Lemma 8.2 (iii). �

Lemma 8.4. Let R be a Sylow 2-subgroup of G0. Then R ∈ Syl2(G) and FR(G0) = FR(G).

Proof. Since q ∼ εq∗, we have that the 2-fusion system of PSLεn(q∗) is isomorphic to the 2-
fusion system of PSLn(q) (see Proposition 3.20). Clearly, G0/Z(G0) ∼= PSLεn(q∗). So the 2-
fusion system of G0/Z(G0) is isomorphic to the 2-fusion system of G. It easily follows that
|G0|2 = |G0/Z(G0)|2 = |G|2, and Lemma 2.11 shows that the 2-fusion system of G0 is isomorphic
to that of G0/Z(G0) and hence to that of G. This completes the proof. �
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Lemma 8.5. The following hold.

(i) If q∗ 6= 3, then O2′(O2(CG(t))) = KL.
(ii) If q∗ = 3, then O2(CG(t)) = KL.

Proof. Set C := CG(t).

Assume that q∗ 6= 3. Then KL is perfect. This implies that KL = O2′(O2(KL)) ≤ O2′(O2(C)).
Since T ∩KL = (T ∩K)(T ∩L) = X1X2, Lemmas 5.4 and 2.11 show that C/KL has a nilpotent

2-fusion system. So C/KL is 2-nilpotent by [39, Theorem 1.4]. This implies O2′(O2(C)) ≤ KL.
We assume now that q∗ = 3. Then KL = O2(KL) since K is perfect and L ∼= SL2(3).

Thus KL ≤ O2(C). In order to prove equality, it suffices to show that C/KL is a 2-group. By
Proposition 7.7 and Lemma 6.3 (i), C/KCC(K) is a 2-group. By [37, 6.5.2], we have L ≤ CC(K).
It is enough to show that CC(K)/L is a 2-group.

We have O2(CC(K))∩ T ≤ O2(CC(X1))∩ T = X2 by Lemma 5.6 and the hyperfocal subgroup
theorem [19, Theorem 1.33]. On the other hand, X2 ≤ L = O2(L) ≤ O2(CC(K)). Consequently,
X2 = O2(CC(K)) ∩ T ∈ Syl2(O2(CC(K))). Set U := CO2(CC(K))(X2). We have X2 E C since X2

is the unique Sylow 2-subgroup of L ∼= SL2(3). So we have U E C. Hence Z(X2) = X2 ∩ U ∈
Syl2(U). Applying [37, 7.2.2], we conclude that U is 2-nilpotent. We have O(U) = 1 since U E C
and O(C) = 1 by Proposition 7.7. It follows that U = Z(X2).

Clearly, O2(CC(K))/U is isomorphic to a subgroup of Aut(X2). We have |O2(CC(K))/U |2 = 4
since Q8

∼= X2 ∈ Syl2(O2(CC(K))) and U = Z(X2). Also, |O2(CC(K))/U | ≥ 12 since L ≤
O2(CC(K)). As Aut(X2) ∼= Aut(Q8) ∼= S4 by [37, 5.3.3], it follows that |O2(CC(K))/U | = 12.
This implies O2(CC(K)) = L. So CC(K)/L is a 2-group, as required. �

Lemma 8.6. We have KL ≤ G0.

Proof. We have t ∈ X2 ≤ L = L{n−1,n} ≤ G0. Let R ∈ Syl2(G0) with t ∈ R such that 〈t〉 is fully
centralized in G := FR(G0). By Lemma 8.4, R ∈ Syl2(G) and G = FR(G). Therefore, CR(t) ∈
Syl2(CG(t)) and CG(〈t〉) = FCR(t)(CG(t)). Also, T = CS(t) ∈ Syl2(CG(t)) and CFS(G)(〈t〉) =
FT (CG(t)). So, by Lemma 5.3, CG(〈t〉) has a component isomorphic to the 2-fusion system of
SLn−2(q).

Let Z ≤ Z(SLεn(q∗)) with G0
∼= SLεn(q∗)/Z. By the proof of Lemma 8.4, Z(G0) has odd order.

Let x̃ be an element of SLεn(q∗) such that x := x̃Z is an involution of SLεn(q∗)/Z. Set C :=
CSLεn(q∗)/Z(x). It is easy to note that the 2-components of C are precisely the images of the
2-components of CSLεn(q∗)(x̃) in SLεn(q∗)/Z. Using this, it is not hard to see from Lemmas 3.3 and
3.4 that one of the following holds:

(1) q∗ 6= 3, O2′(O2(C)) = K0L0, where K0 and L0 are subnormal subgroups of C such that
K0
∼= SLεn−i(q

∗) and L0
∼= SLεi (q

∗) for some 1 ≤ i < n. Moreover, the 2-components of C
are precisely the quasisimple elements of {K0, L0}.

(2) q∗ = 3, O2(C) = K0L0, where K0 and L0 are subnormal subgroups of C such that
K0
∼= SLεn−i(q

∗) and L0
∼= SLεi (q

∗) for some 1 ≤ i < n. Moreover, the 2-components of C
are precisely the quasisimple elements of {K0, L0}.

(3) C has precisely one 2-component, and this 2-component is isomorphic to a nontrivial
quotient of SLn/2((q∗)2).

As seen above, CG(〈t〉) = FCR(t)(CG0(t)) has a component isomorphic to the 2-fusion system
of SLn−2(q). By Proposition 2.16, this component is induced by a 2-component of CG0(t). In
view of the preceding observations, we can conclude that CG0(t) has subgroups K0 and L0 with

K0
∼= SLεn−2(q∗) and L0

∼= SL2(q∗) such that O2′(O2(CG0(t))) = K0L0 if q∗ 6= 3 and O2(CG0(t)) =
K0L0 if q∗ = 3.

Clearly, O2′(O2(CG0(t))) ≤ O2′(O2(CG(t))) and O2(CG0(t)) ≤ O2(CG(t)). Lemma 8.5 implies
that K0L0 ≤ KL. If n is odd, then it is easy to see that |K0L0| = |K0||L0| ≥ |K||L| = |KL|.
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If n is even, then one can easily see that |K0L0| = 1
2 |K0||L0| ≥ 1

2 |K||L| = |KL|. Consequently,
K0L0 ≤ KL and |K0L0| ≥ |KL|. It follows that KL = K0L0 ≤ G0. �

Corollary 8.7. Let x be an involution of G0 which is G-conjugate to t. Let L0 be the unique
normal SL2(q∗)-subgroup of CG(x), and let K0 be the component of CG(x) different from L0.
Then we have K0L0 ≤ G0.

Proof. Since t ∈ G0, we see from Lemma 8.4 that there is some g ∈ G0 with x = tg. Clearly,
(K0L0) = (KL)g, and so K0L0 ≤ G0 by Lemma 8.6. �

Lemma 8.8. We have NG(S) ≤ NG(G0).

Proof. Set M := NG(G0). Let s ∈ NS(S ∩ M), and let 1 ≤ i ≤ n − 1. We have t{i,i+1} ∈
S ∩ L{i,i+1} ≤ S ∩ G0 ≤ S ∩M , and hence (t{i,i+1})

s ∈ S ∩M ≤ M . Since G0 has odd index in
M by Lemma 8.4, we even have (t{i,i+1})

s ∈ G0. Corollary 8.7 implies that (L{i,i+1})
s ≤ G0. So

we have s ∈M by the definition of G0. Thus NS(S ∩M) = S ∩M and hence S ≤M . It is clear
that CG(S) ≤M . Using Lemma 3.23, we conclude that NG(S) = SCG(S) ≤M . �

Lemma 8.9. If x is an involution of S, then CG(x) ≤ NG(G0).

Proof. Set M := NG(G0).
We begin by proving that CG(t) ≤ M . We have K ≤ G0 ≤ M by Lemma 8.6 and CG(t) =

KNCG(t)(X1) by the Frattini argument. Also, NCG(t)(X1) = TCCG(t)(X1) as a consequence of
Lemma 5.7, and T ≤M by Lemma 8.8. So it suffices to show that CCG(t)(X1) ≤M .

Let z ∈ CCG(t)(X1). In order to prove z ∈M , it is enough to show that (L{i,i+1})
z ≤ G0 for all

1 ≤ i < n. If 1 ≤ i < n and i 6= n− 2, we have z ∈ CG(t{i,i+1}) and hence (L{i,i+1})
z = L{i,i+1} ≤

G0. It remains to show that (L{n−2,n−1})
z ≤ G0. Since FS(G) = FS(PSLn(q)), there is some

g ∈ G with tg = u, ug = t and (t{2,3})
g = t{n−2,n−1}. From the definition of L (Proposition

6.8), it is easy to see that L{1,2} = A1 ≤ K. Since u = t{1,2} and t{2,3} are K-conjugate, we
thus have L{2,3} ≤ K ≤ L2′(CG(t)). Hence L{n−2,n−1} = (L{2,3})

g ≤ L2′(CG(t))g = L2′(CG(u)).
Since z centralizes u, it follows that (L{n−2,n−1})

z ≤ L2′(CG(u)). From Corollary 8.7, we see
that L2′(CG(u)) ≤ G0. So we have (L{n−2,n−1})

z ≤ G0, and it follows that CCG(t)(X1) ≤ M .
Consequently, CG(t) ≤M .

Since G0 has odd index in M by Lemma 8.4, we see from Lemma 8.8 that S ≤ G0. Also,
FS(G0) = FS(G) by Lemma 8.4. As CG(t) ≤M , it follows that CG(x) ≤M for any involution x
of S which is G-conjugate to t.

Assume now that x is an involution of S which is G-conjugate to ti for some even natural
number i with 4 ≤ i < n such that i ≤ n

2 if n is even. We are going to show that CG(x) ≤ M .
Arguing by induction over i and using the preceding observations, we may assume that for each
even 2 ≤ j < i and each involution y of S which is G-conjugate to tj , we have CG(y) ≤ M .
Furthermore, we may assume that 〈x〉 is fully FS(G)-centralized since FS(G) = FS(G0).

As a consequence of Lemma 7.1, CG(x) is generated by the normalizers NCG(x)(U), where U
is a subgroup of CS(x) containing a G-conjugate of tj for some even 2 ≤ j < i. We show that
each such normalizer is contained in M . Thus let U be a subgroup of CS(x) and let y be an
element of U which is G-conjugate to tj for some even 2 ≤ j < i. Also, let g ∈ NCG(x)(U). Then
yg ∈ U ≤ CS(x) ≤ S. Since FS(G0) = FS(G), we have that y and yg are G0-conjugate. Hence,
there is some m ∈ G0 with yg = ym. We have mg−1 ∈ CG(y) ≤ M . This implies g ∈ M since
m ∈ G0 ≤M . So we have NCG(x)(U) ≤M and hence CG(x) ≤M .

Assume now that x is an arbitrary involution of S. We are going to prove that CG(x) ≤ M .
Since FS(G) = FS(G0), we may assume that 〈x〉 is fully FS(G)-centralized. By Corollary 7.3,
CG(x) is 3-generated. Therefore, CG(x) is generated by the normalizers NCG(x)(U), where U ≤
CS(x) and m(U) ≥ 3. Take some U ≤ CS(x) with m(U) ≥ 3. By Lemma 2.3, any E8-subgroup of
S has an involution which is the image of an involution of SLn(q). It follows that U has an element
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y which is G-conjugate to tk for some even 2 ≤ k < n. By the preceding observations, CG(y) ≤M .
Arguing as above, we can conclude that NCG(x)(U) ≤M . It follows that CG(x) ≤M . �

Proposition 8.10. We have G0 E G.

Proof. Suppose that M := NG(G0) is a proper subgroup of G. By [28, Proposition 17.11], we
may deduce from Lemmas 8.8 and 8.9 that M is strongly embedded in G. Therefore, by [49,
Chapter 6, 4.4], G has only one conjugacy class of involutions. On the other hand, we see from
Proposition 3.5 that G has at least two conjugacy classes of involutions. This contradiction shows
that M = G. Hence G0 E G. �

With Propositions 8.3 and 8.10, we have completed the proof of Theorem 5.2.

9. Proofs of the main results

Proof of Theorem A. By Section 4, Theorem A is true for n ≤ 5.
Suppose now that n ≥ 6. Let q be a nontrivial odd prime power, and let G be a finite simple

group satisfying (CK).
Recall that a natural number k ≥ 6 is said to satisfy P (k) if whenever q0 is a nontrivial odd

prime power and H is a finite simple group satisfying (CK) and realizing the 2-fusion system of
PSLk(q0), we have H ∼= PSLεk(q

∗) for some nontrivial odd prime power q∗ and some ε ∈ {+,−}
with εq∗ ∼ q0. Theorem 5.2 shows that P (k) is satisfied for all natural numbers k ≥ 6.

Therefore, if the 2-fusion system of G is isomorphic to the 2-fusion system of PSLn(q), then
condition (i) of Theorem A is satisfied.

Conversely, if one of the conditions (i), (ii), (iii) of Theorem A is satisfied, then this can only
be condition (i), and Proposition 3.20 implies that the 2-fusion system of G is isomorphic to the
2-fusion system of PSLn(q). �

Proof of Theorem B. Let q be a nontrivial odd prime power and let n ≥ 2 be a natural number,
where q ≡ 1 or 7 mod 8 if n = 2. Let G be a finite simple group and S ∈ Syl2(G). Suppose that
FS(G) has a normal subsystem E on a subgroup T of S such that E is isomorphic to the 2-fusion
system of PSLn(q) and such that CS(E) = 1. We have to show that FS(G) is isomorphic to the
2-fusion system of PSLn(q).

By Lemma 3.21, PSLn(q) is not a Goldschmidt group. Applying [10, Theorem 5.6.18], we
conclude that E is simple. We see from [16, Theorem B] that E is tamely realized by some finite
simple group of Lie type K.

By Theorem A, we have K ∼= PSLεn(q∗) for some nontrivial odd prime power q∗ and some
ε ∈ {+,−} with εq∗ ∼ q.

By Propositions 3.39 and 3.41, we have that Out(K) is 2-nilpotent. Now Proposition 2.19
implies that FS(G) is tamely realized by a subgroup L of Aut(K) containing Inn(K) such that
the index of Inn(K) in L is odd. By Lemma 3.56, the 2-fusion system of L is isomorphic to the
2-fusion system of Inn(K) ∼= K and hence isomorphic to the 2-fusion system of PSLn(q). So
FS(G) is isomorphic to the 2-fusion system of PSLn(q). �

Proof of Corollary C. Let q be a nontrivial odd prime power and let n ≥ 2 be a natural number,
where q ≡ 1 or 7 mod 8 if n = 2. Let G be a finite simple group and let S be a Sylow 2-subgroup
of G. Suppose that F ∗(FS(G)) is isomorphic to the 2-fusion system of PSLn(q).

We have F ∗(FS(G)) E FS(G) and CS(F ∗(FS(G))) = Z(F ∗(FS(G))) = 1. So Theorem B
implies that FS(G) is isomorphic to the 2-fusion system of PSLn(q). �
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