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Kurzfassung

In diesem Beitrag wird ein geschlossener Entwicklungsprozess fiir Flugregler vollaktuierter Multikopter auf Basis von
Simulink und ROS vorgestellt. Dieser Entwicklungsprozess, der sich am V-Modell nach VDI/VDE 2206 orientiert,
ermoglicht einerseits eine schnelle, effiziente und detailierte Modellierung und Simulation durch die Nutzung von MAT-
LAB/Simulink als Simulationsumgebung. Andererseits wird durch einen automatisierten Export des Simulationsmodells
in ROS/C++ Code und anschlieBende Kompilierung ein hoch performanter Code erzeugt, der im Vergleich zu Simulink
sehr geringe Leistungsanforderungen an die Zielhardware stellt und eine zeitaufwindige und fehleranfillige manuelle
Ubertragung nach C++ erspart. ROS bietet eine breite Hardwareunterstiitzung und kann durch seine Node-Struktur
und standardisierte Kommunikationsschnittstellen leicht in bestehende Softwarestrukturen eingebunden werden. Der
vorgestelle Entwicklungsprozess wird beispielhaft auf die Entwicklung eines Beobachters fiir Interaktionskréfte angewen-
det und im realen Flugexperiment validiert.

Abstract

In this paper, a closed-loop development process for flight controllers of fully actuated multicopters based on Simulink and
ROS is presented. The development process, which is based on the V-model according to the standard VDI/VDE 2206,
enables fast, efficient and detailed modeling and simulation by using MATLAB/Simulink as the simulation environment.
In addition to this, an automated export of the simulation model to ROS/C++ code and following compilation generates
a high-performance code. This has, compared to Simulink, very low performance requirements on the target hardware
and avoids a time-consuming and error-prone manual transfer to C++. ROS offers broad hardware support and can be
easily integrated into existing software structures thanks to its node structure and standardized communication interfaces.
The presented development process is exemplarily applied to the development of an observer for interaction forces and
validated in a real flight experiment.

1 Introduction mentioned above, physical contact with the environment is
part of the operational scenario here. For these novel ap-
1.1 Motivation plications, the development of new multicopter concepts is

required. One of these concepts relies on multicopters with
tilted rotors that have the ability to apply forces and torques
independently in all spatial directions without the need to
change the orientation. Furthermore, they are able to main-
tain (within certain limits) an arbitrary static orientation.
This special class is called fully actuated multicopters and
requires special fully actuated flight controllers. Interac-
tion tasks also bring a variety of new challenges, such as
the application and determination of working and contact
forces and torques, or the exact positioning relative to the
target object. In order to cope with these tasks with novel
multicopters, increased requirement profile and increased
risk, new control concepts, good system modeling and in-

Small, unmanned multicopters have been established
on the market for many years and cover a wide
range from small remote-controlled toy drones to large,
semi-autonomous, commercially deployed multicopters.
Thereby, the field of application of these conventional mul-
ticopters is mainly limited to camera-based applications, in
which the multicopter only acts as a flying sensor carrier.
In such applications, contact with the environment is un-
desirable and represents a major safety risk. In addition to
this large commercially available application area, the de-
velopment of multicopters for manipulation tasks is subject
of recent research. In contrast to the camera applications
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tensive testing are necessary. The development process can
be divided into three main stages: (1) Modeling, controller
development and simulation, (2) the generation and inte-
gration of high-performance code for the respective target
hardware and (3) extensive testing in simulation and flight
experiment. The development is an interactive process with
frequent changes between the mentioned phases. In order
to enable an efficient development process, a simple transi-
tion between the stages plays an important role in addition
to the optimization within the respective stages. In this pa-
per, a methodology is presented, how this process can be
designed efficiently for the development of fully actuated
multicopters for tactile tasks.

1.2 State of the Art

The development of multicopters for new operational fields
often includes adaptions up to redevelopment of existing
flight controllers. For this purpose, different practices and
tools for controller development and code execution have
become established. One common way is to adapt the
widely used PX4 autopilot, which originally was devel-
oped for conventional multicopters, to make it capable for
the control of interaction flight maneuvers [1, 2, 6, 14].
Also, MATLAB®/Simulink® with its provided hardware
interfaces is often used for development and execution of
flight controllers [4, 5, 10]. Simulink in particular is very
well suited to efficiently implement complex control algo-
rithms thanks to its graphical programmability and numer-
ous powerful toolboxes. One drawback is the requirement
of higher performance target hardware, which must be able
to run a Simulink model sufficiently fast compared to run-
ning fully compiled control algorithms. Those compiled
control algorithms can either be realized as fully in-house
developments or by using existing frameworks such as the
Robot Operating System (ROS), which also provides li-
braries for multicopter control development [11, 12]. In
recent projects [2—4, 6], ROS is mostly used as middleware

Simulatior

between several guidance, navigation, control and periph-
eral components, benefiting from its broad hardware sup-
port for robotics components. As of now, ROS has not been
widely used as a stand-alone tool for flight control imple-
mentation and execution for physical interactive tasks. A
downside is the time-consuming control development in
C++. Furthermore the GAZEBO simulator [7] that is com-
monly used in combination with ROS, is specialized on
software-in-the-loop simulations for controller verification
but is less suitable for precise physical modeling, which is
of high importance for physical interactive tasks.

To realize a rapid development process, in addition to a
suitable simulation environment and fast code execution, it
is necessary to easily switch between simulation and real
flight experiment. In [9] a development process using code
export from Simulink is shown. However it does not use
a standardized communication interface, which increases
the effort for integrating new modules into the framework.
The work presented in [10] shows a comprehensive de-
velopment process based on a main controller running in
Simulink and a PX4 backup controller with a strong focus
on safety for outdoor experiments. This enormous initial
effort will probably not pay off for projects that will remain
in a flight lab environment.

1.3

This paper presents a new methodology for rapid develop-
ment of advanced multicopter flight control systems. Chap-
ter 2 deals with the general development process based on
the V-model from VDI standard 2206 [15]. The develop-
ment process is exemplarily applied to the development of
a wrench observer for aerial mobile manipulation in chap-
ter 3.
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Figure 1 Overview of the code architecture in Simulink and ROS. Orange: Simulink, blue: ROS, green: multicopter prototype
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2 Development Process

2.1  Choice of the Development Environ-

ment

Rapid and efficient control development benefits from a
powerful simulation environment, fast code execution in
the flight experiment, fast and easy switching between sim-
ulation and flight experiment and a wide hardware support
for sensors and actors. As mentioned in section 1.2, MAT-
LAB/Simulink is one of the top simulation environments
in system modeling and control design and is widely used.
ROS primarily benefits from its broad hardware support
and the very fast execution of the compiled code by default.
In addition, its standardized node architecture and messag-
ing framework enables clear and transparent code structure
and efficient communication between multiple nodes. As
of release R2019b, Simulink provides a ROS interface for
coupling both of the platforms. As a downside this ROS
interface has a low performance and is to slow for real-
time control with high sampling rates. Thus, the presented
development process will build on Simulink and ROS and
overcome the low speed of the ROS interface in Simulink
with an automated code export as a stand alone ROS node.

2.2

The overall architecture of the simulation model is shown
in Fig. 1 (top). It can generally be divided into three main
components:

Simulation Model Architecture

1) Physical Models

This part of the simulation model contains the sub-
models that represent physical processes. This in-
cludes a model of the multicopter with its inertia, the
modeling of the motors as well as the thrust gener-
ation. Besides this, the environment is modeled to
simulate physical interaction tasks. The effect of the
environment on the multicopter is realized by exter-
nal forces or torques. As another physical submodel,
the sensors such as the IMU or an external tracking
system are implemented with their respective charac-
teristics.

2) Guidance, Navigation, Control (GNC)
This module is the main subject of the development
process. It contains the navigation and control func-
tionalities such as the flight controller, a state esti-
mator and a commander that manages the respective
flight modes (lift off, hovering, trajectory tracking,
contact, landing, error, ...). For tactile interaction tasks
it is extended by a force-torque observer to determine
the external loads applied to the multicopter from the
environment. An admittance filter adapts the desired
pose based on the external loads to achieve the desired
mechanical compliance of the system. Depending on
the system design, a trajectory generator as guidance
functionality can also be integrated into this module.
As in figure 1, the module without trajectory gener-
ator is named Navigation and Control (NC) module
within this paper due to not containing the complete

guidance functionality.

3) Communication Interface

The communication interface contains all ROS spe-
cific functionalities to keep the navigation and con-
trol (NC) module general. When the model is used
for simulation in Simulink, the communication inter-
face is bypassed by the signals of the physical models
and the guidance. For the code export the NC module
is disconnected from physical models and guidance
and connected to the communication interface instead.
The communication interface contains the blocks pub-
lish and subscribe from the Simulink-ROS library for
all necessary topics for enabling the automatic embed-
ded code generation for the communication between
the NC module and the ROS nodes of motors, sensors,
and trajectory generator.
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Figure 2 Development process based on the V-model

23

The development process presented here is based on the V-
model as defined by standard VDI/VDE 2206 [15] and is
shown schematically in Fig. 2.

After specification and theoretical conception, the develop-
ment process of new functionalities or modules consists of
SiX steps:

Steps of the Development Process

1) Modeling and Design
Starting from a theoretical concept for a new function-
ality (e.g. a controller or filter) or physical effect, first
of all a model is implemented in the simulation envi-
ronment.

2) MIL Module Test

The module implemented in step 1) is tested in an
open loop test.

This can be done in three stages: As first stage, syn-
thetically generated ideal test data is used to verify the
module behaviour in principle. As second stage, the
robustness of the module e.g. against sensor noise is
tested with simulated sensor data (incl. noise, latency,
etc.). As third stage, recorded sensor data is fed into
the simulation model to further optimize the model.

3) MIL Performance Simulation
After completing the open loop module test, the newly
developed module is included into the overall simula-
tion model and the functionality performance, stabil-
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ity and robustness is tested in a closed model in the
loop (MIL) simulation.

4) Code Export
The tested simulation model (here: NC) is exported
to the target language (here: C++, ROS). For this
purpose, the automatic code export of Simulink is
used and processed by a automated code modification,
which is described in chapter 2.4.

5) Target Module Test
The exported code is executed as a stand-alone ROS
node on the target hardware and can be tested sepa-
rately in an open loop. Here, the correct operation of
the communication interfaces is tested primarily.

6) Flight Experiment
Once all previous tests have been successfully com-
pleted, the newly developed functionality can be
tested and validated in a real flight experiment. The
development process can be repeated iteratively for
further module improvements or refinements of the
environment model.

24  Automated Code Export and Modifica-

tion

Due to the high computation time of the ROS interface
within the Simulink environment shown in Table 1, it is
necessary to convert the simulation model entirely into
compiled code. With the Simulink Coder, Simulink pro-
vides an export functionality to export ROS Nodes in C++
from simulation models. The blocks of the Simulink model
including the communication interface blocks are exported
as separate C++ functions. The communication interface
blocks, which are mentioned in section 2.2 part 3), imple-
ment the publishing and subscribing of ROS messages. In-
coming data is buffered to be used in the next time step.
Outgoing data is published immediately when the respec-
tive function is called within the current time step. A mas-
ter function realizes the coupling of the exported functions
for the correct execution sequence within a time step or
control cycle. A superordinate operator realizes the time
step simulation with constant step size by calling the mas-
ter function periodically. This default execution method
is useful when the exported model itself is the trigger of
the whole control loop. Since conventional sensors have
a fixed sampling rate and cannot be synchronized with the
exported module, additional latencies result between pub-
lishing and processing of the sensor data. Using a very
high clock rate of the exported module, this latency can be
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Figure 3 Hard- and software setup during flight experiments

Table 1 Comparison of the real time factor of a Simulink model
with and without the ROS interface (I/F)

Environment | with ROS I/F  without ROS I/F
Simulink | 0033 2.5

Exported to Target | 10 (median) -

minimized, but results in a high system load. For both low
latency and low system load, it is useful to make the sensor
with the highest sampling rate the trigger for the exported
module. Accordingly, in the automated code modification
of the exported code, the aforementioned master function
is removed from the fixed time step simulation and placed
in a callback structure. For this, the operator is deactivated
and a callback function to the corresponding sensor mes-
sage is generated. This callback function calls the master
function after making the sensor message data accessible
to it. Polling of the corresponding sensor data is removed
from the master function sequence.

3 Case Study
3.1  Multicopter and Model Setup

The used multicopter prototype is a hexarotor with rotors
arranged in a regular star shape. The rotor axes are each ro-
tated about the longitudinal axis of the arms to achieve full
actuation. The fixed rotation angle for each rotor is 20°.
For the design of the multicopter see [8]. The total mass is
4.9 kg. The sensor system consists of an inertial measure-
ment unit (IMU) for measuring translational acceleration
and angular velocity, as well as the HTC Vive tracking sys-
tem, which originally comes from the virtual reality field
and provides a cost-effective alternative to camera-based
motion capture systems for determining absolute position.
To estimate the full pose and twist of the multicopter, an
Extended Kalman Filter (EKF) with 16 states is used for
sensor fusion of the IMU and tracker data. A 6-DOF PD
controller is used to control the state of the multicopter. To
prevent static control errors, the estimated external wrench
is used for feed forward control. Additionally, an inte-

Figure 4 Multicopter with rod-shaped manipulator in contact
with the sensor surface.
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Figure 5 Estimated contact force and true resp. measured con-
tact force for the module test (step 2) with idealized simulation
data (top) and with real sensor data (bottom)

grating controller is used for all DOF except the contact
direction. The 6-DOF force-torque observer corresponds
to [13]. The admittance filter applies a compliance to the
system in the contact direction. Separate ROS nodes for
each sensor provide communication interfaces and prepro-
cessing of sensor data. As target hardware either a ground
computer connected by cable to the multicopter or a single-
board on-board computer can be used. For the data pre-
sented here, as target the desktop computer specified in sec-
tion 3.1 is used. Power supply as well as transmission of
sensor data and actuator commands are cable based. The
setup is shown schematically in Fig. 3.

3.2

As mentioned in chapter 2.1, the performance of the ROS
interface within Simulink is very low. In table 1 the real
time factor of the simulation model in Simulink with and
without the ROS interface is compared with the real time
factor of the code exported as a stand alone ROS node to
the target system. The real time factor denotes the ratio of
simulated time to required computation time. The test was
carried out on a desktop computer running Ubuntu 18.04
and an Intel Xeon® 2.67 GHz CPU. In total 18 publish and
8 subscribe blocks from the ROS toolbox were used within
the model. The used simulation time step of 4 ms corre-
sponds to the sampling rate of the IMU. One can see that
the Simulink export to standalone ROS nodes on the target
is the only powerful way to run a Simulink controller with
ROS interfaces. The ROS node export also enables the con-
troller execution without running Simulink at all and saves
resources at the target hardware.

The code generation for the full NC module currently takes
402.5 sec, of which 243 s stem from the compilation of
the Simulink model, 143 sec from the code generation, 1.5
sec from the code modification and 15 sec from the final
compilation of the C++ code.
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Figure 6 Comparison of the estimated contact force in simula-
tion (step 3) and in real flight (step 6).

3.3  Application of the Development Pro-

cess

The development process presented in chapter 2.3 is
demonstrated using the example of the development of a
force-torque observer for tactile interaction described in
[13]. The flight task is to apply a force to a horizontal sur-
face equipped with a force sensor. In Fig. 4 the multicopter
with rod-shaped manipulator is shown at the moment of
contact with the sensor surface. The cable feed can be seen
at the bottom of the multicopter.

Fig. 5 shows step 2 of the development process, the MIL
module test. The wrench observer is tested in the simula-
tion without feedback (open loop). The result of an ideal
MIL simulation is shown at the top. The input data for
the wrench observer was generated with a closed position
control loop without any sensor noise. A separate module
test with recorded sensor data from a real flight as input
to the wrench observer is shown below. The true contact
force determined in the simulation is shown in red. The
comparison verifies the observer design and shows the gen-
eral performance of the observer. The recorded sensor data
originates from a flight experiment in which the pose of the
multicopter was controlled by a simple PID controller.

In Fig. 6 the estimated contact force in a flight experiment
with closed control loop via wrench observer and admit-
tance filter is shown. The result of the simulation is shown
in red (step 3), the result of the flight experiment in blue
(step 6). The comparison of the two results already shows
a high correspondence between simulation and real flight
experiment. The nonzero estimated force before contact in
real flight mainly results from the influence of the power
and data cables hanging on the multicopter, whose influ-
ence is not taken into account in the simulation.

To validate the observer, the comparison of estimated con-
tact force and contact force measured with an external force
sensor is shown in Fig. 7. The data from the force sensor
and observer were manually synchronized based on the ac-
celeration measurements of the IMU. The measured values
from the force sensor are low-pass filtered. Again, there is
good correspondence between the observer’s estimate and
the reference measurement by the force sensor.
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Figure 7 Force measured with an external force sensor and es-
timated by the observer during the flight experiment to validate
step 6

4 Conclusion

This paper presents a closed-loop development process for
flight controllers with a focus on tactile interaction tasks.
In the presented process, the advantages of Simulink as
a modeling and development environment are combined
with the advantages of ROS which offers a versatile and
powerful interface with low system requirements for fast
code execution. The automatic code export from Simulink
to ROS avoids time-consuming and error-prone manual
implementation in a high-performance programming lan-
guage. The presented development process is applied to
the example of an observer for the determination of contact
forces and shows a good transferability of the simulation
results to reality. The remaining deviations can be mini-
mized in the future by refining the environment model.
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