Maternal filaggrin mutations increase the risk of atopic dermatitis in children: an effect independent of mutation inheritance

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

  • Jorge Esparza-Gordillo - , Experimental and Clinical Research Center (ECRC) (Author)
  • Anja Matanovic - , Experimental and Clinical Research Center (ECRC) (Author)
  • Ingo Marenholz - , Experimental and Clinical Research Center (ECRC) (Author)
  • Anja Bauerfeind - , Max Delbrück Center for Molecular Medicine (MDC) (Author)
  • Klaus Rohde - , Max Delbrück Center for Molecular Medicine (MDC) (Author)
  • Katja Nemat - , Department of Child and Adolescent Psychiatry and Psychotherapy (Author)
  • Min-Ae Lee-Kirsch - , Department of Paediatrics (Author)
  • Magnus Nordenskjöld - , Karolinska Institutet (Author)
  • Marten C G Winge - , Karolinska Institutet (Author)
  • Thomas Keil - , Department of Dermatology, Allergy and Venereology (Author)
  • Renate Krüger - , Pediatric Pneumology and Immunology (Author)
  • Susanne Lau - , Pediatric Pneumology and Immunology (Author)
  • Kirsten Beyer - , Pediatric Pneumology and Immunology (Author)
  • Birgit Kalb - , Pediatric Pneumology and Immunology (Author)
  • Bodo Niggemann - , Pediatric Pneumology and Immunology (Author)
  • Norbert Hübner - , Max Delbrück Center for Molecular Medicine (MDC) (Author)
  • Heather J Cordell - , Newcastle University (Author)
  • Maria Bradley - , Karolinska University Hospital (Author)
  • Young-Ae Lee - , Experimental and Clinical Research Center (ECRC) (Author)

Abstract

Epidemiological studies suggest that allergy risk is preferentially transmitted through mothers. This can be due to genomic imprinting, where the phenotype effect of an allele depends on its parental origin, or due to maternal effects reflecting the maternal genome's influence on the child during prenatal development. Loss-of-function mutations in the filaggrin gene (FLG) cause skin barrier deficiency and strongly predispose to atopic dermatitis (AD). We investigated the 4 most prevalent European FLG mutations (c.2282del4, p.R501X, p.R2447X, and p.S3247X) in two samples including 759 and 450 AD families. We used the multinomial and maximum-likelihood approach implemented in the PREMIM/EMIM tool to model parent-of-origin effects. Beyond the known role of FLG inheritance in AD (R1meta-analysis = 2.4, P = 1.0 x 10-36), we observed a strong maternal FLG genotype effect that was consistent in both independent family sets and for all 4 mutations analysed. Overall, children of FLG-carrier mothers had a 1.5-fold increased AD risk (S1 = 1.50, Pmeta-analysis = 8.4 x 10-8). Our data point to two independent and additive effects of FLG mutations: i) carrying a mutation and ii) having a mutation carrier mother. The maternal genotype effect was independent of mutation inheritance and can be seen as a non-genetic transmission of a genetic effect. The FLG maternal effect was observed only when mothers had allergic sensitization (elevated allergen-specific IgE antibody plasma levels), suggesting that FLG mutation-induced systemic immune responses in the mother may influence AD risk in the child. Notably, the maternal effect reported here was stronger than most common genetic risk factors for AD recently identified through genome-wide association studies (GWAS). Our study highlights the power of family-based studies in the identification of new etiological mechanisms and reveals, for the first time, a direct influence of the maternal genotype on the offspring's susceptibility to a common human disease.

Details

Original languageEnglish
Pages (from-to)e1005076
JournalPLoS Genetics
Volume11
Issue number3
Publication statusPublished - Mar 2015
Peer-reviewedYes

External IDs

Scopus 84926223357
PubMed 25757221
PubMedCentral PMC4355615

Keywords

Sustainable Development Goals

Keywords

  • Dermatitis, Atopic/genetics, Female, Filaggrin Proteins, Genome-Wide Association Study, Genomic Imprinting, Humans, Intermediate Filament Proteins/genetics, Male, Meta-Analysis as Topic, Mutation