The mitotic kinesin-14 Ncd drives directional microtubule-microtubule sliding

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Gero Fink - , Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Lukasz Hajdo - , Polish Academy of Sciences, University of Łódź (Autor:in)
  • Krzysztof J. Skowronek - , Polish Academy of Sciences, International Institute of Molecular and Cell Biology in Warsaw (Autor:in)
  • Cordula Reuther - , Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Andrzej A. Kasprzak - , Polish Academy of Sciences (Autor:in)
  • Stefan Diez - , Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)

Abstract

During mitosis and meiosis, the bipolar spindle facilitates chromosome segregation through microtubule sliding as well as microtubule growth and shrinkage. Kinesin-14, one of the motors involved, causes spindle collapse in the absence of kinesin-5 (Refs 2, 3), participates in spindle assembly and modulates spindle length. However, the molecular mechanisms underlying these activities are not known. Here, we report that Drosophila melanogaster kinesin-14 (Ncd) alone causes sliding of anti-parallel microtubules but locks together (that is, statically crosslinks) those that are parallel. Using single molecule imaging we show that Ncd diffuses along microtubules in a tail-dependent manner and switches its orientation between sliding microtubules. Our results show that kinesin-14 causes sliding and expansion of an anti-parallel microtubule array by dynamic interactions through the motor domain on the one side and the tail domain on the other. This mechanism accounts for the roles of kinesin-14 in spindle organization.

Details

OriginalspracheEnglisch
Seiten (von - bis)717-723
Seitenumfang7
FachzeitschriftNature cell biology
Jahrgang11
Ausgabenummer6
PublikationsstatusVeröffentlicht - 2009
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

PubMed 19430467
ORCID /0000-0002-0750-8515/work/142235570

Schlagworte

ASJC Scopus Sachgebiete

Bibliotheksschlagworte