Mouse liver assembloids model periportal architecture and biliary fibrosis

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Anna M. Dowbaj - , Max Planck Institute of Molecular Cell Biology and Genetics, Technische Universität München (Autor:in)
  • Aleksandra Sljukic - , Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Armin Niksic - , Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Cedric Landerer - , Max Planck Institute of Molecular Cell Biology and Genetics, Zentrum für Systembiologie Dresden (CSBD) (Autor:in)
  • Julien Delpierre - , Max Planck Institute of Molecular Cell Biology and Genetics, INSERM - Institut national de la santé et de la recherche médicale (Autor:in)
  • Haochen Yang - , Max Planck Institute of Molecular Cell Biology and Genetics, Zentrum für Systembiologie Dresden (CSBD), University of Oxford (Autor:in)
  • Aparajita Lahree - , Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Ariane C. Kühn - , Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • David Beers - , University of Oxford, University of California at Los Angeles (Autor:in)
  • Helen M. Byrne - , University of Oxford (Autor:in)
  • Sarah Seifert - , Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Heather A. Harrington - , Max Planck Institute of Molecular Cell Biology and Genetics, Zentrum für Systembiologie Dresden (CSBD), University of Oxford, Exzellenzcluster PoL: Physik des Lebens (Autor:in)
  • Marino Zerial - , Max Planck Institute of Molecular Cell Biology and Genetics, Zentrum für Systembiologie Dresden (CSBD), Human Technopole (Autor:in)
  • Meritxell Huch - , Max Planck Institute of Molecular Cell Biology and Genetics, Zentrum für Systembiologie Dresden (CSBD), Exzellenzcluster PoL: Physik des Lebens (Autor:in)

Abstract

Modelling liver disease in vitro requires systems that replicate disease progression1,2. Current tissue-derived organoids do not reproduce the complex cellular composition and tissue architecture observed in vivo3. Here, we describe a multicellular organoid system composed of adult hepatocytes, cholangiocytes and mesenchymal cells that recapitulates the architecture of the liver periportal region and, when manipulated, models aspects of cholestatic injury and biliary fibrosis. We first generate reproducible hepatocyte organoids with a functional bile canaliculi network that retain morphological features of in vivo tissue. By combining these with cholangiocytes and portal fibroblasts, we generate assembloids that mimic the cellular interactions of the periportal region. Assembloids are functional, consistently draining bile from bile canaliculi into the bile duct. Of note, manipulating the relative number of portal mesenchymal cells is sufficient to induce a fibrotic-like state, independently of an immune compartment. By generating chimeric assembloids of mutant and wild-type cells, or after gene knockdown, we show proof of concept that our system is amenable to investigating gene function and cell-autonomous mechanisms. Together, we demonstrate that liver assembloids represent a suitable in vitro system to study bile canaliculi formation, bile drainage and how different cell types contribute to cholestatic disease and biliary fibrosis in an all-in-one model.

Details

OriginalspracheEnglisch
Seiten (von - bis)473–482
Seitenumfang10
FachzeitschriftNature
Jahrgang644
Ausgabenummer8076
PublikationsstatusVeröffentlicht - 29 Mai 2025
Peer-Review-StatusJa

Externe IDs

PubMed 40441268

Schlagworte

ASJC Scopus Sachgebiete