Differences in the regenerative response of neuronal cell populations and indications for plasticity in intraspinal neurons after spinal cord transection in adult zebrafish
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
In zebrafish, the capacity to regenerate long axons varies among different populations of axotomized neurons after spinal cord transection. In specific brain nuclei, 84-92% of axotomized neurons upregulate expression of the growth-related genes GAP-43 and L1.1 and 32-51% of these neurons regrow their descending axons. In contrast, 16-31% of spinal neurons with axons ascending to the brainstem upregulate these genes and only 2-4% regrow their axons. Dorsal root ganglion (DRG) neurons were not observed to regrow their ascending axons or to increase expression of GAP-43 mRNA. Expression of L1.1 mRNA is high in unlesioned and axotomized DRG neurons. In the lesioned spinal cord, expression of growth-related molecules is increased in a substantial population of non-axotomized neurons, suggesting morphological plasticity in the spinal-intrinsic circuitry. We propose that locomotor recovery in spinal-transected adult zebrafish is influenced less by recovery of ascending pathways, but more by regrowth of descending tracts and rearrangement of intraspinal circuitry.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 265-278 |
Seitenumfang | 14 |
Fachzeitschrift | Molecular and Cellular Neuroscience |
Jahrgang | 30 |
Ausgabenummer | 2 |
Publikationsstatus | Veröffentlicht - Okt. 2005 |
Peer-Review-Status | Ja |
Extern publiziert | Ja |
Externe IDs
PubMed | 16098761 |
---|